Charm inputs to γ/ϕ_3 for the next decade

Patrick Spradlin
University of Oxford
6th International Workshop on the CKM Unitarity Triangle
6-10 September 2010
University of Warwick

Experimental horizon

Beauty Experiments

LHCb Taking data now!

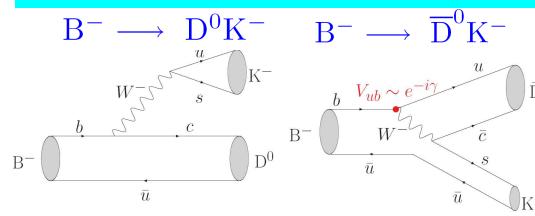
1 fb⁻¹ at sqrt(s) = 7 TeV in 2011 : 7-10° uncertainty comb ined 10 fb⁻¹ at sqrt(s) = 14 TeV by 2016 : 1.9-2.7° combined LHCb upgrade after 2016, 10x larger sample : < 1.4° combined

Belle II Commissioning in 2014

50 ab⁻¹ at Y(4S) by 2021: 1.5° uncertainty combined

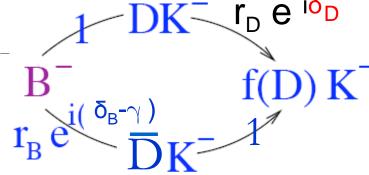
Charm at $\psi(3770)$ Super B could come online in the next decade

CLEO-c to finish analysis on 818 pb⁻¹ ≈ 5.4 million DDbar pairs



BESIII has collected 950 pb⁻¹
Expected to collect a total 10 fb⁻¹ of open charm by 2016
Plenary Talk by Yangheng Zheng

ψ(3770) run at a super B factory and a t-charm factory at Novosibirsk possible


γ/ϕ_3 from B[±] \rightarrow DK[±]

- Extraction through interference between
 b→u and b→c transitions

$$\mathsf{K^0}_\mathsf{S}\mathsf{hh}$$
 ; $\mathsf{K}\pi$; $\mathsf{K}\pi\pi\pi$; $\mathsf{K}\pi\pi^0$

• Comparison of B⁻ and B⁺ rates allow γ parameters vary over Dali to be extracted. But other parameters in game. In particular invaluable to have constraint on δ_D – the very quantity we can access in quantum-correlated D-decays!

 $r_D \& \delta_D$ analogous to B-decay quantities. For 3, 4-... body decays, these parameters vary over Dalitz space

$B^{\pm} \rightarrow D^{0}(K\pi)K^{\pm}$ with the ADS method

Atwood-Dunietz-Soni (ADS) method uses Doubly Cabibbo suppressed decays to enhance γ/ϕ_3 -sensitive interference terms

$$r_D^{K\pi} \approx 0.06$$
 similar magnitude to $r_B \approx 0.1$

$$\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma)$$

$$\Gamma(B^{+} \to (K^{+}\pi^{-})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$$

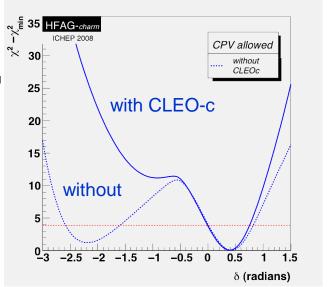
Method can be extended to multibody decays, e.g., $K\pi\pi\pi$: $\delta_{n}^{K3\pi}$ is the

Coefficients of interference terms similar order to rest of expression

 $\underline{\delta_{D}^{K3\pi}}$ is the average strong phase difference over Dalitz space

$$\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi}) - \gamma)$$

Coherence factor $R_{K3\pi}$ value between 0 (incoherent) and 1 (2 body single amplitude limit)


Two body strong phase, $\delta_D^{K\pi}$

CLEO-c recently released preliminary update

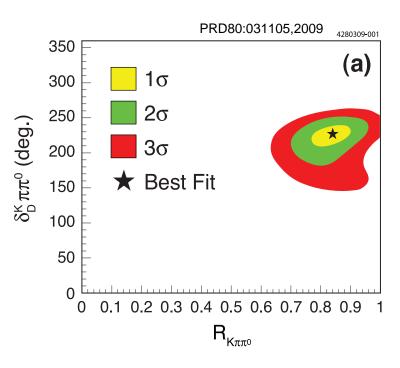
Previous: $\delta_D^{K\pi} = (22^{+11+9}_{-12-11})^{\circ}$ PRL 100 (2008) 221801, 281 pb⁻¹

New: $\delta_D^{K\pi} = \left(15^{+11}_{-17} \pm 7\right)^{\circ}$ Talk by Stefania Ricciardi, 818 pb⁻¹

	Parameter	Previous: PDG, HFAG, or CLEO	Fit: no ext. meas.	Fit: with ext. y, x, y'				
X	y (10 ⁻²)	0.79 ± 0.13	3.0 ± 2.0 ± 1.2	0.635 ± 0.118				
	x ² (10 ⁻³)	0.037 ± 0.024	1.5 ± 2.0 ± 0.9	0.022 ± 0.017				
	r² (10 ⁻³)	3.32 ± 0.08	4.12 ± 0.92 ± 0.23	3.32 ± 0.08				
	cosδ	1.10 ± 0.36	$0.98^{+0.27}_{-0.20} \pm 0.08$	1.15 ± 0.16 ± 0.12				
	sinδ		-0.04 ± 0.49 ± 0.08	0.55 ^{+0.36} -0.40 ± 0.08				
	δ (°) [derived]	22 +11 -12 +9 -11	0 ± 22 ± 6	15 ⁺¹¹ . ₁₇ ± 7				
	See talk by Stefania Ricciardi							

Effect of PRL 100 (2008) 221801;PRD 78 (2008) 012001 (previous measurement) on world average

Precision relies on constraints from external measurements of mixing parameters


New result without the constraints: $\delta_D^{K\pi} = (0 \pm 22 \pm 6)^{\circ}$

Desirable to have higher precision independent measurement → BESIII

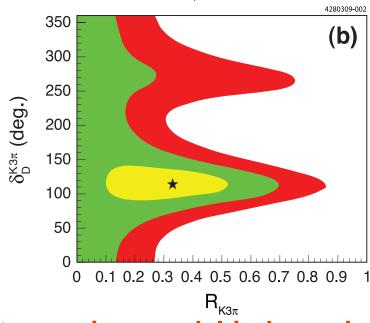
Multibody coherence and strong phase

ADS method extensible to multibody D⁰ decay if coherence factor R_f and mean strong phase δ_D^f are independently measured.

CLEO-c measurements with $\underline{K^-\pi^+\pi^0}$ and $K^-\pi^+\pi^+\pi^-$ Other modes, e.g. $K_SK\pi$, can be treated similarly

- •K- π + π^0 highly coherent: $R_{K\pi\pi^0} = 0.84 \pm 0.07$
- Excellent for pseudo-2body ADS measurement
- Precision of parameters enhanced by external mixing constraints
- •Sensitivity to γ in $K\pi\pi^0$ still under investigation
- •Current precision of strong phase not likely to be limiting at LHCb: $\delta_D^{K\pi\pi^0} = (227^{+14}_{-17})^{\circ}$
- •Belle II and LHCb Upgrade will benefit from improved precision

Multibody coherence and strong phase

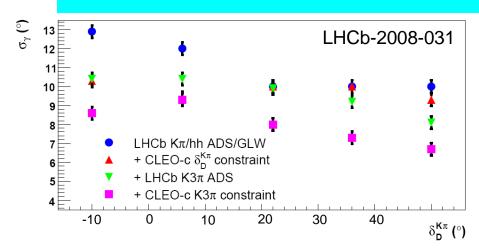

ADS method extensible to multibody D⁰ decay if coherence factor R_f and mean strong phase δ_D^f are independently measured.

CLEO-c measurements with K-π+π⁰ and K-π+π+π-

Kπππ incoherent: $R_{K3\pi} = 0.33^{+0.26}_{-0.23}$ Thus insensitive to γ/ϕ_3 in an ADS analysis

$$\Gamma \propto r_B^2 + (r_D^{K3\pi})^2 + 2r_B r_D^{K3\pi} R_{K3\pi} \cos(\delta_B + \delta_D^{K3\pi} - \gamma)$$

Found to be useful due to enhanced sensitivity to r_B



PRD80:031105.2009

For low coherence modes, power to extract γ requires model-independent binned method

Model-independent strong phase structure of K3π requires larger sample at BESIII

LHCb combined sensitivity

LHCb study of γ sensitivity with toy samples equivalent to 2 fb-1 in selected ADS/GLW* modes shows the striking benefit of independent measurements of strong phases δ_{D}

*GLW: Phys.Lett.B253:483, Phys.Lett.B265:172

An extension of the combined sensitivity study included Dalitz method with $K_s\pi\pi$

Trend suggests that sensitivity is dominated by B statistics with current charm constraints

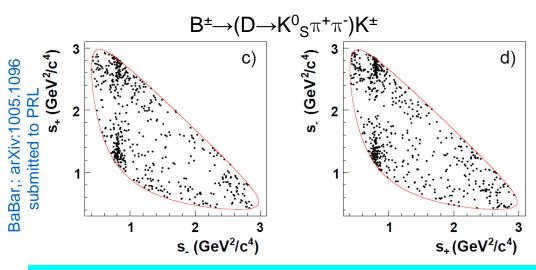
			LI 100 2000 00					
δ_{B^0} (°)	0	45	90	135	180			
$0.5 \; {\rm fb^{-1}}$								
σ_{γ} without CLEO-c constraints (°)	11.5	12.9	13.1	12.5	9.7			
σ_{γ} with CLEO-c constraints (°)	9.0	12.0	10.7	11.1	8.6			
$2 \; {\rm fb^{-1}}$								
σ_{γ} without CLEO-c constraints (°)	5.8	8.3	7.8	8.4	5.0			
σ_{γ} with CLEO-c constraints (°)	4.6	6.1	5.7	6.0	4.3			
$10 \; {\rm fb^{-1}}$								
σ_{γ} without CLEO-c constraints (°)	2.6	5.4	3.5	4.8	2.4			
σ_{γ} with CLEO-c constraints (°)	2.3	3.5	2.9	3.2	2.2			

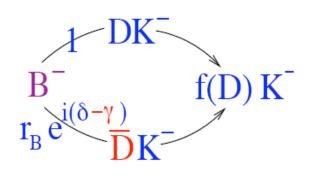
Current strong phase precision for these modes satisfactory until Belle II/LHCb upgrade

(Does not include the potential benefit of a binned analysis with $K3\pi$)

Charm inputs to γ/φ³ for the next decade Spradlin, CKM 2010 WG V, Warwick

I HCb-2008-03

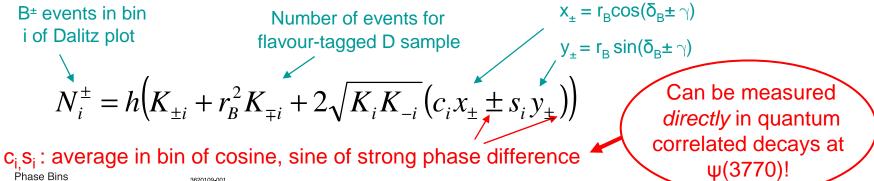

Amplitude analyses

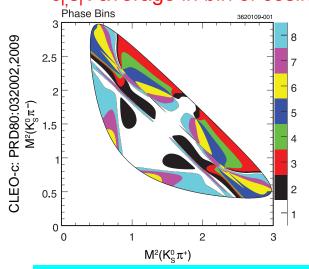

In multibody D decays, the amplitude modulus and strong phase vary across the Dalitz plot

Extraction of γ/ϕ_3 by comparing Dalitz Plots of B⁻ \rightarrow DK⁻ and B⁺ \rightarrow DK⁺

Requires independent understanding of Dalitz plot:

- 1. Precise amplitude model, or
- 2. Binned model-independent measurement of parameters


Use of a model incurs irreducible systematic uncertainty, e.g.,


- •3° BaBar K_Sππ and K_SKK arxiv:1005.1096 [hep-ex]
- •9° Belle K_Sππ PRD81:112002,2010

Potential for improved models, but model-independent method shows great promise

Reminder: Model-independent method

Binned fit proposed by Giri *et al.* [PRD 68 (2003) 054018] and developed by Bondar & Poluektov [EPJ C 55 (2008) 51; EPJ C47 (2006) 347] removes model dependence by relating events in bin i of Dalitz plot to *experimental observables*.

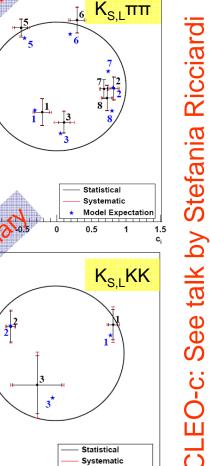
Choosing bins of *expected* similar strong phase difference maximises statistical precision

Small loss in statistical sensitivity of γ/ϕ_3 due to binning

No irreducible model uncertainty Uncertainty due to statistical precision of bin parameters scales with size of $\psi(3770)$ sample

First successes: K_Sππ and K_SKK

CLEO-c has measured the strong phase difference of D0 decays to $K_{S,L}\pi\pi$ and $K_{S,L}KK$ in bins of expected strong phase


Toy studies estimate uncertainty on potential measurement of γ/ϕ_3 at LHCb from CLEO-c precision:

 $K_{S,L}\pi\pi$: 1.7-3.9° systematic (varies with bin choice)

Estimated LHCb statistical uncertainties: ~15.0° with 2 fb ⁻¹, ~7° with 10 fb ⁻¹

 $K_{S,L}KK: 3.1-4.5^{\circ}$ systematic (varies with bin choice) BaBar arXiv:1005.1096 [hep-ex] indicates that K_SKK has the same per-event sensitivity as $K_S\pi\pi$

Current precision sufficient for LHCb, but improved BESIII precision needed for Belle II/LHCb Upgrade Belle II predicts 2° with 50 ab $^{-1}$ of $K_{S}\pi\pi$

Toward exploitation of more D decays

Measurements of γ/ϕ_3 with an amplitude analysis can be extended to many D decay modes to enhance sensitivity

- Provided that precise models or model-independent determinations of parameters are available!
- High BR modes analogous to D⁰ → K_Sπ⁺π^{-:} π⁺π^{-π0} and K_Sπ⁺π^{-π0}
 - Under investigation. Like K_Sπ⁺π⁻, current data samples likely sufficient for LHCb, but more precision required for Belle II/LHCb Upgrade.
- Suppressed modes: D0 → K_SKπ and K+K-π+π-
 - Models under investigation. Model-independent measurements will probably require BES-III sample
- Low coherence ADS modes: Κπππ
 - Certainly improved with large BES-III sample.

Conclusions

- More precise charm measurements are necessary to obtain long-term target precision of γ/ϕ_3 .
 - Current precision of several inputs are sufficient for LHCb 10 fb⁻¹
- Model-independent parameter measurements for multibody Dalitz measurements of γ/φ₃ can and should be carried out for additional modes to maximize future sensitivity