$|V_{ub}|$ measurements with inclusive B \rightarrow $X_u \ell v$ decays

Concezio Bozzi
INFN Sezione di Ferrara

Outline:

- Introduction
- Endpoint analyses
- Recoil analyses: new results from Babar limits on weak annihilation
- HFAG averages
- Conclusion

V_{ub} and semileptonic decays

- Hadronic and leptonic currents factorize
- Mature theoretical description
 - QCD corrections to quark-level decay
 - Operator Product Expansion in α_s and Λ/m_h
- Uncertainty on the predicted total decay rate below 5%
- Nevertheless, |V_{ub}| is a limiting factor in CKM precision tests
 - about 7% uncertainty, dominated by theory

Inclusive charmless decays

• In principle:

$$\Gamma(b \to u \ell \overline{\mathbf{v}}) = \frac{G_F^2}{192\pi^2} |V_{ub}|^2 m_b^5 \left(\mathbf{1} + 補正項 \right)$$

Unfortunately:

$$\frac{\Gamma(b \to u \ell \overline{v})}{\Gamma(b \to c \ell \overline{v})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

Measurements in restricted kinematic regions

 E_1 = lepton energy

 q^2 = dilepton mass squared

 m_X = hadron system mass

$$P_+ = E_X - |\boldsymbol{p}_X|$$

- Unfortunately in these regions
 - OPE breaks down
 - need a-priori unknown "shape function" to resum non-perturbative physics
 - Increased sensitivity to m_b
 - Possible weak annihilation effects
- Theory and background subtraction give conflicting requirements → trade-off must be found

"Classic" endpoint analyses

- Typical requirements: missing momentum, event shape
- S/B ~ 1/10, ε<~40%, measurements limited by background knowledge

	$\mathcal{L}(fb^{-1})$	$E_{\ell}(\text{GeV})$	$\Delta\mathcal{B}(10^{-4})$
BaBar	81.4	2.0-2.6	5.72±0.41±0.65
Belle	27.0	1.9-2.6	8.5±0.4±1.5
CLEO	9.13	2.2-2.6	2.30±0.15±0.35

PRD 73, 012006 (2006) PL B 621 (2005) 28 PRL 88, 231803 (2002)

"improved" endpoint analysis

• Separate $b \rightarrow cl \nu$ background by using

$$s_h^{\text{max}} = m_B^2 + q^2 - 2m_B \left(E_e + \frac{q^2}{4E_e} \right)$$

• S/B~1/2, ε~25%

BaBar (PRL 95, 111801, 2005 PRL 97, 019903 (2006) Err.)

$$\Delta \mathcal{B}(2.0, 3.5) = (4.41 \pm 0.42 \pm 0.42) \times 10^{-4}$$

Systematics dominated by K_L and neutral particle ID, charm SL decays

Analyses on recoil samples

- Y(4S) decay products overlap
- Reconstruct a full decay chain of one B (B_{reco}) $B \rightarrow D(*)\pi, D(*)\pi \pi^0, D(*)3\pi, etc...(\sim 1000 modes)$
- Study the recoiling B
 - Decay products are properly assigned
 - Require an high-momentum lepton (p*>1GeV/c) and missing mass consistent with neutrino
 - Kinematics completely determined → access to m_x, q², P₊
 - Low statistics(0.3%-0.5% efficiency)
- Subtract non-SL backgrounds by fitting the m_{ES} distribution

$$m_{\mathrm{ES}} = \sqrt{s/4 - \vec{p}_B^2}$$

Yields ~ 4000 B/fb⁻¹

New: Babar recoil analysis

- Update of Phys. Rev. Lett. 100 (2008) 171802 on the full Babar dataset (426 fb⁻¹)
- (incremental) improvements on B_{reco} selection and better treatment of systematic uncertainties
- More regions of phase space analysed
 - Full correlation matrix available (see backup slides)
- Results also for charged and neutral B separately
- Select three samples on the recoil side:
 - Semileptonic (for normalization): at least one lepton with p*>1GeV
 - 2. $B \rightarrow X_u \ell v$ signal-enhanced: vetoes on kaons & soft pions from $D^* \ell v$, requirements on missing mass, event charge and charge correlations
 - B→X_u ℓ_V signal-depleted: reverse kaon and D* ℓ_V vetoes and check data-MC agreement

Data-MC agreement

BABAR preliminary

Extraction of signal yields

- Fit the distributions of kinematic variables in several regions of phase space:
 - $M_X < 1.55 \,\text{GeV}/c^2$ and $M_X < 1.70 \,\text{GeV}/c^2$,
- $P_+ < 0.66 \,\text{GeV}/c$.

- $M_X < 1.70 \,\text{GeV}/c^2$, $q^2 > 8.0 \,\text{GeV}^2/c^4$
- $p_{\ell}^* > 1.3 \,\text{GeV/}c$,
- (M_X, q^2) fit by requiring p*>1GeV/c only
- p* fits performed also from p*>1.0 to 2.3 GeV/c
- Subtract combinatorial background by fitting m_{ES} in each bin
- Reweight SL decays into P-wave D mesons by using the signaldepleted sample
 - Better fit χ^2 , negligible impact on signal yields
 - $-N_{D^{**}}/(N_D+N_{D^*}+N_{D^{**}})$ smaller in data than MC
- Normalize to semileptonic sample in order to minimize experimental systematic uncertainties

$$\Delta R_{\rm u/sl} = \frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\mathcal{B}(B \to X \ell \nu)} = \frac{(N_u^{\rm fit})/(\epsilon_{\rm sel}^u \epsilon_{\rm kin}^u)}{(N_{\rm sl}^{\rm meas} - BG_{\rm sl})} \times \frac{\epsilon_l^{\rm sl} \epsilon_t^{\rm sl}}{\epsilon_l^u \epsilon_t^u}$$

Multiply $R_{\mathrm{u/sl}}$ by $(10.66 \pm 0.15)\%$ to obtain $\Delta \mathcal{B}(\overline{B} o X_u \ell ar{
u})$

Results

426 fb⁻¹

BABAR preliminary

- $B \rightarrow X_{ii} I n$
- $B \to X_c I n$ (bkgd)
- B → X_u I n (outside selected region)

(Lower row: background-subtracted distributions)

Regions of phase space	N_u	$\epsilon_{ m sel}^u \epsilon_{ m kin}^u$	$\Delta \mathcal{B}(B \to X_u \ell \nu) \ (10^{-3})$
(a) $M_X < 1.55 \mathrm{GeV}/c^2$	1033 ± 73	0.365 ± 0.002	$1.08 \pm 0.08 \pm 0.06$
$M_X < 1.70 { m GeV}/c^2$	1089 ± 82	0.370 ± 0.002	$1.15 \pm 0.10 \pm 0.08$
(b) $P_{+} < 0.66 \text{GeV}$	902 ± 80	0.375 ± 0.003	$0.98 \pm 0.09 \pm 0.08$
(c) $M_X < 1.70 \text{GeV}/c^2, q^2 > 8 \text{GeV}^2/c^4$	665 ± 53	0.386 ± 0.003	$0.68 \pm 0.06 \pm 0.04$
$(M_X, q^2), \ p_{\ell}^* > 1 \text{GeV}/c$	1441 ± 102	0.338 ± 0.002	$1.80 \pm 0.13 \pm 0.15$
$p_{\ell}^* > 1.0 \mathrm{GeV}/c$	1462 ± 137	0.339 ± 0.002	$1.76 \pm 0.16 \pm 0.18$
(d) $p_{\ell}^* > 1.3 \text{GeV}/c$	1326 ± 118	0.359 ± 0.002	$1.50 \pm 0.13 \pm 0.14$

			Babai	r preliminary			Belle
Source $\sigma(\Delta \mathcal{B}(B \to X_u \ell \nu))$	$M_X < 1.55$ GeV/ c^2	$M_X < 1.70$ GeV/c^2	$P_{+} < 0.66$ GeV	$M_X < 1.70 \text{GeV}/c,$ $q^2 > 8 \text{GeV}^2/c^4$	(M_X, q^2) $p_\ell^* > 1.0 \text{ GeV/} \epsilon$		$\begin{array}{c} p_{\ell}^* > 1.0 \\ \text{GeV}/c \end{array}$
Statistical	7.1	8.9	8.9	8.0	7.1	8.9	0.0
MC statistics	1.3	1.3	1.3	1.6	1.1	1.2	8.8
Detector-related	2.8	3.7	5.5	4.1	3.2	2.7	3.3
Fit-related	2.7	4.9	3.2	3.2	2.1	2.5	3.6
Signal model	2.7	3.0	3.5	1.9	6.6	7.9	6.3
Background model	2.0	2.6	3.4	2.8	2.8	2.2	1.7
Total syst	5.2	6.3	8.1	6.2	8.1	9.0	8.1
Total error	8.9	11.0	12.1	10.3	10.8	12.7	12.0

- Statistical accuracies: 7-9%
- Systematic uncertainties dominated by signal model in most inclusive analyses
- total uncertainties: 9-13% → ~4-6% on |V_{ub}|

Belle recoil analysis

604 fb⁻¹

- Instead of using cuts, exploit non-linear correlations between kinematic and event variables available in recoil sample to separate b→u and b→c.
- Boosted Decision Tree (BDT) based selection, use many event parameters from the full reconstruction sample.
- ε~22%
- Require a lepton with p*>1GeV/c
- Fit (M_x,q²) distribution with no cuts other than p* and BDT
- Do not fit m_{ES} distributions, estimate combinatorial from MC and normalization from sideband region
- Normalize to number of tags instead of semileptonic sample

 measure absolute BR

$$\Delta \mathcal{B} = \frac{N_{b \to u}^{\Delta}}{(2\epsilon_{b \to u}^{\Delta} N_{\text{tag}})} (1 - \delta_{\text{rad}})$$

Belle recoil analysis: results

 \sim 1032 ± 91 (stat) Events

Systematics

O y o torria troo						
$p^{*B}_{\ell} > 1.0 \text{ GeV}$	ΔBR/BR (%)					
$BR(D^{(*)} \mathcal{L} \nu)$	1.2					
$FF(D^{(*)} \ell \nu)$	1.2					
BR & FF (D ^(**) <i>l</i> ν)	0.2					
SF $(X_u \ell v)$	3.6					
$X_u (g \rightarrow ss)$	1.5					
BR(π/ρ/ω <i>l</i> ν)	2.3					
BR(η/η' <i>l</i> ν)	3.2					
$BR(X_{unmeasured} \ \ell \ \nu)$	2.9					
Continuum/Combinatorial	1.8					
Secondaries/Fakes/Fit	1.0					
Particle ID/Reconstruction	3.1					
BDT	3.1					
Systematics	8.1					
Statistics	8.8					

Phys.Rev.Lett.104:021801,2010

 $BR(B \rightarrow X_u | v) \times 10^{-3} = 1.963 \times (1 \pm 0.088 \text{ (stat)} \pm 0.081 \text{ (sys)})$

604 fb⁻¹

Limits on WA

- PBF for charged and neutral B meson decays have also been measured
- They can be used to set a limit on weak annihilation (WA) in B+ decays

$$\frac{\gamma_{WA}}{\Gamma} = \frac{f_u}{f_{WA}} \cdot R^{+/0},$$

$$R^{+/0} = \frac{\Delta \Gamma^+}{\Delta \Gamma^0} = \frac{\tau^0}{\tau^+} \cdot \frac{\Delta \mathcal{B}(B^+ \to X_u \ell \nu)}{\Delta \mathcal{B}(B^0 \to X_u \ell \nu)}$$

Phase Space Region	$R^{+/0} - 1$	f_u	C.L. (90%)
$M_X \le 1.70 \text{GeV}/c^2, q^2 \ge 8 \text{GeV}^2$			
			$-0.13 \le \gamma_{WA}/\Gamma \le 0.09$
			$-0.12 \le \gamma_{WA}/\Gamma \le 0.26$
$(M_X, q^2) p_\ell^* > 1.0 \text{GeV}/c$	$0.109\pm0.157\pm0.019$	0.87	$-0.15 \le \gamma_{WA}/\Gamma \le 0.37$

Other results:

$$\frac{|\Gamma_{WA}|}{\Gamma_u} < 7.4\% \ at \ 90\%C.L.$$
 CLEO, studing the q² spectra PRL96,121801 (2006)

$$\frac{|\Gamma_{WA}|}{\Gamma_u} < \frac{3.8\%}{f_{WA}(2.3 - 2.6)} \ at \ 90\% C.L.$$

Babar arXiv: 0708.1753 383 M BB

Average of the six Babar determinations is

 $4.17 \pm 0.18 + 0.21 - 0.23$

$$+2.2_{\text{stat}} +1.7_{\text{exp}} +1.2_{\text{b2c model}} +1.9_{\text{b2u model}} +2.9_{\text{HQE param}} +0.4_{\text{SF func}} +0.6_{\text{sub SF}} +1.2_{\text{WA}} +3.7_{\text{matching}} = +6.1_{\text{transpect}} +0.4_{\text{SF func}} +0.5_{\text{SF func}} +0.6_{\text{sub SF}} +1.2_{\text{WA}} +3.7_{\text{matching}} = +6.1_{\text{transpect}} +0.4_{\text{transpect}} +0.4_{\text{transpect}} +0.6_{\text{sub SF}} +1.2_{\text{WA}} +3.7_{\text{matching}} = +6.1_{\text{transpect}} +0.4_{\text{transpect}} +0.4_{\text{transpect}} +0.6_{\text{sub SF}} +1.2_{\text{WA}} +3.7_{\text{matching}} = +6.1_{\text{transpect}} +0.4_{\text{transpect}} +0.6_{\text{sub SF}} +1.2_{\text{WA}} +3.7_{\text{matching}} = +6.1_{\text{transpect}} +1.2_{\text{was}} +1.2_{\text{wa$$

Average of the six Babar determinations is

 $4.27 \pm 0.17 + 0.18 - 0.17$

$$+2.0_{\rm stat}$$
 $+1.7_{\rm exp}$ $+1.2_{\rm b2c\ model}$ $+2.0_{\rm b2u\ model}$ $+0.4_{\rm alpha_s\ R_CUT}$ $+3.5_{\rm mb}$ $+1.3_{\rm WA}$ $+0.4_{\rm DGE\ theory}$ $+5.0_{\rm stat}$ $-1.6_{\rm exp}$ $-1.2_{\rm b2c\ model}$ $-1.8_{\rm b2u\ model}$ $-0.4_{\rm alpha_s\ R_CUT}$ $-3.5_{\rm mb}$ $-1.3_{\rm WA}$ $-0.5_{\rm DGE\ theory}$

Average of the six Babar determinations is

 $4.20 \pm 0.19 + 0.13 - 0.18$

$$+2.3_{\text{stat}} +1.9_{\text{exp}} +1.2_{\text{b2c model}} +1.6_{\text{b2u model}} +2.5_{\text{par.}} +1.5_{\text{pert.}} +1.7_{\text{q2*}} +0._{\text{WA}} +0.5_{\text{ff}} = +4.9_{\text{tot}} -2.3_{\text{stat}} -1.9_{\text{exp}} -1.2_{\text{b2c model}} -1.6_{\text{b2u model}} -2.5_{\text{par.}} -1.5_{\text{pert.}} -1.5_{\text{pert.}} -1.7_{\text{q2*}} -3.9_{\text{WA}} -0.2_{\text{ff}} = -6.3_{\text{tot}}$$

Average of the six Babar determinations is

 $3.96 \pm 0.16 + 0.23 - 0.21$

$$+1.9_{\text{stat}} +1.8_{\text{exp}} +1.3_{\text{b2c model}} +1.2_{\text{b2u model}} +0.7_{\text{alpha_s}} +1.7_{\text{Vcb}} +0.7_{\text{mb}} +4.4_{\text{mc}} +1.0_{\text{BF}} +3.2_{\text{model}} = +6.7_{\text{tot}} -1.9_{\text{stat}} -1.8_{\text{exp}} -1.4_{\text{b2c model}} -1.3_{\text{b2u model}} -1.2_{\text{alpha_s}} -1.7_{\text{Vcb}} -0.8_{\text{mb}} -4.4_{\text{mc}} -0.9_{\text{BF}} -3.2_{\text{model}} = -6.9_{\text{tot}} -6.9_{\text{tot}} -6.9_{\text{tot}} -6.9_{\text{tot}} = -6.9_{\text{tot}} -6.$$

Conclusions

- Partial branching fraction measurements performed in several phase space regions
 - Important for testing theoretical predictions
- Comparable statistical and systematic uncertainties (~8% each)
 - Signal modeling dominates (~6%) the most inclusive recoil analyses
 - Detector (K_1 , PID) and m_{FS} fit modeling (~4-5%) follow
 - Background modeling dominates endpoint analyses
- are the current limits on WA useful at all?
- Inclusive |V_{ub}| determinations for different calculations give similar theory uncertainties; the spread among calculations is comparable to the theory errors
- Total uncertainty on inclusive |V_{ub}| determinations at the 6% level, dominated by parametric errors (e.g. ~4% from m_b)
 - BUT: NNLO calculation not included: sizeable change for BLNP! (Pecjak et al; see Einan's talk)

Systematic uncertainties preliminary

Source	$M_X < 1.55$	$M_X < 1.70$	$P_{+} < 0.66$	$M_X < 1.70 \text{GeV}/c,$	(M_X, q^2)	$p_{\ell}^* > 1.0$	$p_{\ell}^* > 1.3$
$\sigma(\Delta \mathcal{B}(B \to X_u \ell \nu))$	GeV/c^2	GeV/c^2	GeV		$p_{\ell}^* > 1.0 \text{GeV}/c$	GeV/c	GeV/c
Statistical error	7.1	8.9	8.9	8.0	7.1	9.4	8.9
MC statistics	1.3	1.3	1.3	1.6	1.1	1.1	1.2
	tector-relate	d:					
Tracking efficiency	0.4	1.0	1.1	1.7	0.7	1.2	0.1
Neutral efficiency	1.3	2.1	4.0	0.7	1.0	0.9	0.9
π^0 efficiency	1.2	0.9	1.1	0.9	0.9	2.9	1.1
PID eff. & misID	1.9	2.4	3.3	2.9	2.3	2.9	2.2
K_L	0.9	1.3	1.1	2.1	1.6	1.3	0.6
	related: (tb	/					
m_{ES} fit parameters	2.0	2.7	1.9	2.6	1.9	2.0	2.5
combinatorial backg.	1.8	1.8	2.6	1.8	1.0	2.1	0.5
	nal knowledg						
SF parameters	$\begin{array}{c} 2.4 \\ -1.6 \end{array}$	$\frac{1.8}{-0.9}$	0.6 -1.8	0.6	6.0 -4.9	$\frac{5.8}{-7.1}$	$\begin{array}{c} 7.1 \\ -6.1 \end{array}$
SF form	1.2	1.6	2.6	1.2	1.5	1.1	1.1
Exclusive $B \to X_u \ell \nu$	0.6	1.3	1.6	0.7	1.9	5.3	3.4
Gluon splitting	1.2	1.6	1.1	1.0	2.7	3.1	2.4
0	round knowl						
K_S veto	0.8	1.4	1.7	2.1	1.2	1.3	0.3
B SL branching ratio	0.9	1.4	1.5	1.4	1.0	0.8	0.7
D decays	1.1	0.6	1.1	0.6	1.1	1.6	1.5
$B \to D\ell\nu$ form factor	0.5	0.5	1.3	0.4	0.4	0.1	0.2
$B \to D^* \ell \nu$ form factor	0.7	0.7	0.9	0.7	0.7	0.7	0.7
$B \to D^{**} \ell \nu$ form factor	0.8	0.9	1.3	0.4	0.9	1.0	0.3
$B \to D^{**}$ reweight	0.4	1.0	1.1	0.7	1.6	0.1	1.2
Total systematics:	5.3 -5.0	$\begin{array}{r} 6.4 \\ -6.2 \end{array}$	$8.0 \\ -8.1$	$\begin{array}{c} 6.2 \\ -6.2 \end{array}$	8.5 -7.7	$ \begin{array}{r} 10.5 \\ -11.2 \end{array} $	$9.4 \\ -8.7$
Total error:	9.0 -8.8	$ \begin{array}{r} 11.0 \\ -10.9 \end{array} $	$12.0 \\ -12.1$	$^{10.2}_{-10.3}$	11.1 -10.5	$ \begin{array}{r} 14.1 \\ -14.6 \end{array} $	$12.9 \\ -12.4$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calculation		$\Delta\Gamma_{theory}(B \to X_u \ell \nu) \ (ps^{-1})$	$ V_{ub} (10^{-3})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			42.0 ± 5.6	$4.03 \pm 0.15 \pm 0.11 \pm 0.28$
BLNP $M_X \le 1.70 \text{GeV}/c^2, q^2 \ge 8 \text{GeV}^2$ $(M_X, q^2) p_\ell^* > 1.0 \text{GeV}/c$ 62.7 ± 6.3 $4.27 \pm 0.15 \pm 0.18 \pm 0.26$ $p_\ell^* > 1.0 \text{GeV}/c$ 62.7 ± 6.3 $4.21 \pm 0.20 \pm 0.22 \pm 0.26$ $p_\ell^* > 1.3 \text{GeV}/c$ 62.7 ± 6.3 $4.21 \pm 0.20 \pm 0.22 \pm 0.26$ $p_\ell^* > 1.3 \text{GeV}/c^2$ 53.4 ± 5.6 $4.22 \pm 0.19 \pm 0.20 \pm 0.27$ $M_X \le 1.55 \text{GeV}/c^2$ 44.8 ± 6.2 $M_X \le 1.70 \text{GeV}/c^2$ 44.8 ± 6.2 40.2 ± 10.2 $39.3 \pm 0.16 \pm 0.12 \pm 0.23$ 40.2 ± 10.2 $39.3 \pm 0.18 \pm 0.12 \pm 0.26$ 40.2 ± 10.2 $39.3 \pm 0.18 \pm 0.12 \pm 0.26$ 40.2 ± 10.2 $40.2 \pm 10.$		$M_X \le 1.70 \mathrm{GeV}/c^2$	47.3 ± 5.9	$3.91 \pm 0.17 \pm 0.12 \pm 0.25$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			40.9 ± 5.6	$3.90 \pm 0.18 \pm 0.16 \pm 0.29$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BLNP	$M_X \le 1.70 \text{GeV}/c^2, q^2 \ge 8 \text{GeV}^2$	24.3 ± 3.4	$4.22 \pm 0.19 \pm 0.12 \pm 0.30$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(M_X, q^2) p_\ell^* > 1.0 \text{GeV}/c$	62.7 ± 6.3	$4.27 \pm 0.15 \pm 0.18 \pm 0.26$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$p_{\ell}^* > 1.0 \mathrm{GeV}/c$	62.7 ± 6.3	$4.21 \pm 0.20 \pm 0.22 \pm 0.26$
$\begin{array}{c} M_X \leq 1.70 \mathrm{GeV}/c^2 \\ P_+ \leq 0.66 \mathrm{GeV} \\ P_+ \leq 0.66 \mathrm{GeV} \\ M_X \leq 1.70 \mathrm{GeV}/c^2, q^2 \geq 8 \mathrm{GeV}^2 \\ (M_X, q^2) p_\ell^* > 1.0 \mathrm{GeV}/c \\ p_\ell^* > 1.0 \mathrm{GeV}/c \\ p_\ell^* > 1.3 \mathrm{GeV}/c \\ M_X \leq 1.70 \mathrm{GeV}/c \\ p_\ell^* > 1.3 \mathrm{GeV}/c \\ p_\ell^* > 1.0 \mathrm{GeV}/c \\ p_\ell^* > 1.0 \mathrm{GeV}/c \\ p_\ell^* > 1.0 \mathrm{GeV}/c \\ p_\ell^* > 1.3 \mathrm{GeV}/c \\ M_X \leq 1.55 \mathrm{GeV} \\ M_X \leq 1.70 \mathrm{GeV} \\ P_+ \leq 0.66 \mathrm{GeV} \\ M_X \leq 1.70 \mathrm{GeV} \\ P_+ \leq 0.66 \mathrm{GeV} \\ M_X \leq 1.70 \mathrm{GeV} \\ P_+ \leq 0.66 \mathrm{GeV} \\ M_X \leq 1.70 \mathrm{GeV}/c \\ M_X \leq 1.70 \mathrm{GeV}/$		$p_{\ell}^* > 1.3 \mathrm{GeV}/c$	53.4 ± 5.6	$4.22 \pm 0.19 \pm 0.20 \pm 0.27$
DGE $\begin{array}{c} P_{+} \leq 0.66 \ \text{GeV} \\ M_{X} \leq 1.70 \ \text{GeV}/c^{2}, \ q^{2} \geq 8 \text{GeV}^{2} \\ (M_{X}, q^{2})p_{\ell}^{*} > 1.0 \ \text{GeV}/c \\ p_{\ell}^{*} > 1.0 \ \text{GeV}/c \\ p_{\ell}^{*} > 1.0 \ \text{GeV}/c \\ p_{\ell}^{*} > 1.3 \ \text{GeV}/c \\ p_{\ell}^{*} > 1.0 \ \text{GeV}/c \\ $		$M_X \le 1.55 \mathrm{GeV}/c^2$	38.3 ± 9.2	$4.23 \pm 0.16 \pm 0.12 \pm 0.23$
DGE $M_X \le 1.70 \text{GeV}/c^2, q^2 \ge 8 \text{GeV}^2$ $(M_X, q^2)p_\ell^* > 1.0 \text{GeV}/c$ 60.7 ± 1.1 $4.34 \pm 0.16 \pm 0.18 \pm 0.28 \pm 0.28 \pm 0.21 \pm 0.23 \pm 0.22 \pm 0.23 \pm 0.23 \pm 0.22 \pm 0.23 $		$M_X \leq 1.70 \mathrm{GeV}/c^2$	44.8 ± 6.2	$4.02 \pm 0.18 \pm 0.12 \pm 0.26$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$P_{+} \leq 0.66 \text{GeV}$	40.2 ± 10.2	$3.93 \pm 0.18 \pm 0.16 \pm 0.36$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{\text{DGE}}$		25.6 ± 4.0	$4.10 \pm 0.18 \pm 0.12 \pm 0.23$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(M_X, q^2)p_\ell^* > 1.0 \text{GeV}/c$	60.7 ± 1.1	$4.34 \pm 0.16 \pm 0.18 \pm 0.28$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$p_{\ell}^* > 1.0 \mathrm{GeV}/c$	60.7 ± 1.1	$4.28 \pm 0.20 \pm 0.23 \pm 0.21$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$p_{\ell}^* > 1.3 \mathrm{GeV}/c$	53.7 ± 3.3	$4.27 \pm 0.19 \pm 0.19 \pm 0.21$
GGOU $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$M_X \le 1.55 \mathrm{GeV}$		$3.96 \pm 0.15 \pm 0.11 \pm 0.25$
GGOU $M_X \le 1.70 \text{ GeV}, q^2 \ge 8 \text{GeV}^2$ 26.0 ± 7.8 $4.07 \pm 0.18 \pm 0.12 \pm 0.28$ $(M_X, q^2)p_\ell^* > 1.0 \text{ GeV}/c$ 62.1 ± 3.4 $4.29 \pm 0.15 \pm 0.18 \pm 0.18$ $p_\ell^* > 1.0 \text{ GeV}/c$ 62.1 ± 3.4 $4.24 \pm 0.20 \pm 0.23 \pm 0.22$ $p_\ell^* > 1.3 \text{ GeV}/c$ 53.6 ± 4.1 $4.23 \pm 0.19 \pm 0.19 \pm 0.23$ $M_X \le 1.55 \text{ GeV}$ $ 3.84 \pm 0.14 \pm 0.11 \pm 0.25$ $M_X \le 1.70 \text{ GeV}$ $ 3.96 \pm 0.17 \pm 0.14 \pm 0.25$ $P_+ \le 0.66 \text{ GeV}$ $ 3.59 \pm 0.17 \pm 0.15 \pm 0.25$ $M_X \le 1.70 \text{ GeV}, q^2 \ge 8 \text{ GeV}^2$ $ 3.77 \pm 0.17 \pm 0.12 \pm 0.23$ $(M_X, q^2)p_\ell^* > 1.0 \text{ GeV}/c$ $ 4.35 \pm 0.19 \pm 0.20 \pm 0.29$			49.4 ± 5.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			47.0 ± 14.3	$3.64 \pm 0.17 \pm 0.15 \pm 0.52$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GGOU		26.0 ± 7.8	$4.07 \pm 0.18 \pm 0.12 \pm 0.28$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(M_X, q^2)p_\ell^* > 1.0 \text{GeV}/c$	62.1 ± 3.4	$4.29 \pm 0.15 \pm 0.18 \pm 0.18$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$p_{\ell}^* > 1.0 \mathrm{GeV}/c$	62.1 ± 3.4	$4.24 \pm 0.20 \pm 0.23 \pm 0.22$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$p_{\ell}^* > 1.3 \mathrm{GeV}/c$	53.6 ± 4.1	$4.23 \pm 0.19 \pm 0.19 \pm 0.23$
ADFR		$M_X \le 1.55 \mathrm{GeV}$	_	$3.84 \pm 0.14 \pm 0.11 \pm 0.25$
ADFR $M_X \le 1.70 \text{GeV}, q^2 \ge 8 \text{GeV}^2$ $ 3.77 \pm 0.17 \pm 0.12 \pm 0.23$ $ 4.35 \pm 0.19 \pm 0.20 \pm 0.29$	ADFR	$M_X \le 1.70 \mathrm{GeV}$	_	$3.96 \pm 0.17 \pm 0.14 \pm 0.25$
$(M_X, q^2)p_\ell^* > 1.0 \text{GeV}/c$ - $4.35 \pm 0.19 \pm 0.20 \pm 0.29$			_	$3.59 \pm 0.17 \pm 0.15 \pm 0.25$
			_	$3.77 \pm 0.17 \pm 0.12 \pm 0.23$
		$(M_X, q^2)p_\ell^* > 1.0 \text{GeV}/c$	_	$4.35 \pm 0.19 \pm 0.20 \pm 0.29$
$ p_{\ell} > 1.0 \text{ GeV/C}$		$p_{\ell}^* > 1.0 \mathrm{GeV}/c$	_	$4.28 \pm 0.20 \pm 0.23 \pm 0.29$
$p_{\ell}^* > 1.3 \text{GeV/}c$ $-4.28 \pm 0.19 \pm 0.20 \pm 0.29$		$p_{\ell}^* > 1.3 \mathrm{GeV}/c$	_	$4.28 \pm 0.19 \pm 0.20 \pm 0.29$

Correlation matrix for Babar analysis

TABLE V: Matrix of statistical correlations between different analyses. The $p_{\ell}^* > 1 \,\text{GeV}/c$ requirement is implicitly assumed in the definitions of phase space regions, unless otherwise noted. The entries above the main diagonal refer to correlations between measurements of partial branching fractions; the entries below the main diagonal (in boldface) refer to correlations on $|V_{ub}|$ measurements. In the latter case, theoretical correlations have been included, as described in the text.

Analysis	$M_X < 1.55$	$M_X < 1.70$	$P_{+} < 0.66$	$M_X < 1.70 \mathrm{GeV}/c^2$	(M_X,q^2)	$p_{\ell}^* > 1.3$
·	GeV/c^2	GeV/c^2	GeV	$q^2 > 8 \text{GeV}^2/\text{c}^4$	$p_\ell^* > 1.0 \text{GeV}/c$	GeV/c
$M_X < 1.55 \mathrm{GeV}/c^2$	1	0.77	0.74	0.50	0.72	0.57
$M_X < 1.70 \mathrm{GeV}/c^2$	0.81	1	0.86	0.55	0.94	0.73
$P_{+} < 0.66 \text{GeV}$	0.69	0.81	1	0.46	0.78	0.61
$M_X < 1.70 \text{GeV}/c^2, q^2 > 8 \text{GeV}^2/c^4$	0.40	0.46	0.38	1	0.52	0.46
$(M_X, q^2), \ p_{\ell}^* > 1 \text{GeV}/c$	0.58	0.88	0.67	0.34	1	0.74
$p_{\ell}^* > 1.3 \mathrm{GeV}/c$	0.53	0.72	0.58	0.40	0.72	1

HFAG averages from http://www.slac.stanford.edu/xorg/hfag/semi/EndOfYear09/home.shtml Endpoint measurements included, new Babar result not included

HFAG averages from http://www.slac.stanford.edu/xorg/hfag/semi/EndOfYear09/home.shtml Endpoint measurements included, new Babar result not included