Semileptonic b decays at LHCb

Phillip Urquijo Syracuse University On behalf of the LHCb collaboration

CKM Workshop 2010 Working Group II

Introduction

- Main goals for semileptonic decay measurements in LHCb:
- Cross section for bb production
- Hadronisation studies: b $(B_d^0/B^+/B_s/\Lambda_b)$ fractions
- Exclusive semileptonic decays (Cabibbo favoured/ Cabibbo suppressed):
 - Composition of the inclusive semileptonic width, form factors & CKM parameters: HQET tests beyond the B⁰/B⁺.
 - Even Cabibbo suppressed decays are no longer rare at the LHC.
- Semileptonic asymmetry, A_{fs}

@CKM2010:

b-cross section measurement from semi inclusive $b \rightarrow D^{\circ}X\mu^{-}\nu$, measurements of $b \rightarrow D^{+}/D_{s}/\Lambda_{c}X\mu^{-}$ decays, and a first look at neutrino reconstruction @ LHCb.

b Production Characteristics

LHCb ICHEP2010

The LHCb Detector

- LHCb deals with overwhelming QCD background with 3-level trigger.
- For semileptonic decays we can trigger as low as pT(muon)~1GeV (much lower than Tevatron)

LHC Performance

B Reconstruction

σ_{bb} from b->D°Xµ-v

- Signal: $D^0 \mu (D^0 \rightarrow K^-\pi^+)$ using tracks which form a common vertex.
 - Background from "**Prompt**" D separated from Signal "DfB" using impact parameter (between D0 direction and primary vertex)
- 3nb⁻¹ untriggered, 11 nb⁻¹ triggered: pT(muon)>1.3GeV: trigger Efficiency ~50 %

-2

11 nb⁻¹

50

Events / (0.5) 05 05 05

10

LHCb

40 Preliminary

Sidebands

Prompt

-4

Cross section systematics large due to dependence on absolute normalisation i.e. **luminosity 10%**, **tracking efficiency 10%**, **fragmentation fraction...**

0

$b \rightarrow D^+/D_s/\Lambda_c X\mu^-\nu$

• In fact there is a *Large* discrepancy on decay fractions to the different b species that must be resolved.

Species	LEP Z ⁰ fraction %	Tevatron fraction %
B-	40.3±0.9	33.3 ± 3.0
B ⁰	40.3±0.9	33.3±3.0
Bs	10.4±0.9	12.1±1.5
$\Lambda_{\rm b}$	9.1±1.5	21.4±6.8

- *All Preliminary* results for CKM 2010:
 - 3-prong studies of $b \rightarrow D^+/D_s/\Lambda_c X \mu^- v$
 - $\sim 800 \text{ nb}^{-1} \text{ sample.}$
- Single muon triggers used at L0, Hlt1, Hlt2: $p_T \mu > 1.3$ GeV

$b \rightarrow D^+ X \mu v$

Reconstruct $D^+ \rightarrow K\pi\pi$

Use as cross check of D_{s}^{+} studies

Phillip Urquijo CKM 2010

 $b \rightarrow D_s X \mu^- v$

Inclusive Dalitz phase space selection.

Λ_b Semileptonics

Several exclusive measurements of Λ_b exist but not inclusive - infer from lifetime.

$$\begin{split} \Lambda_{c}^{+} \mid \stackrel{-}{\mathsf{v}} &= (5.0^{+1.9}_{-1.4}) \ 10^{-2} \\ \Lambda_{c}^{+} \pi^{+} \pi^{-} \mid \stackrel{-}{\mathsf{v}} &= (5.6 \pm 3.1) \ 10^{-2} \\ & \mathsf{BR}(\mathsf{baryon}_{c} \rightarrow \Lambda_{c}^{+}) = 1 \\ \Lambda_{c}(2595)^{+} \mid \stackrel{-}{\mathsf{v}} &= (6.3^{+4.0}_{-3.1}) \ 10^{-3} \\ & \Lambda_{c}(2625)^{+} \mid \stackrel{-}{\mathsf{v}} &= (1.1^{+0.6}_{-0.4}) \ 10^{-2} \\ & \Sigma_{c}(2455)^{0} \pi^{+} \mid \stackrel{-}{\mathsf{v}} & \mathsf{Upper limits from} \\ & \Sigma_{c}(2455)^{++} \pi^{-} \mid \stackrel{-}{\mathsf{v}} & \mathsf{tevatron.} \end{split}$$

 $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- \nu$ form factors measured at DELPHI: $\rho^2 = 2.03 \pm 0.5 \pm 1.0$, some Lattice calculations exist.

bb pairs with uud (from p) and forms $\Lambda_b B^+$ which may cause an asymmetry in B/B, and Λ_b/Λ_b production.

 $\Lambda_b^{o} \rightarrow \Lambda_c^+ X \mu^- v$

Reconstruct $\Lambda_c^+ \rightarrow p^+ K^- \pi^+ (BR=5.0 \pm 1.3\%)$

$B_s \rightarrow D_s X \mu \neg \nu$ Exclusive

Towards V_{ub}/V_{cb} exclusive

Neutrino reconstruction.

B direction determined from vertex displacement.

|pB| in semileptonic decays can be determined with two-fold ambiguity.

Lower |pB| provides better resolution \rightarrow unfold for bias

Neutrino Reco. Resolution

Resolution is adequate for sensitivity in q2 for Bs $\rightarrow D_s \mu - \nu$.

Signal predictions for Ds and D_s^* ($\rightarrow Ds \gamma/\pi^0$) channels, based on D⁺ and D^{*+} form factors

Phillip Urquijo CKM 2010

$B_s \rightarrow D_s X \mu^- \nu q^2$

- $B_s \rightarrow D_s \mu^- \nu$ fit to IP&m(KK π) in q2 bins ~800 nb⁻¹ (in $D_s \rightarrow \Phi \& K^*$ modes)
 - Relative fractions based on D/D*/D**, not all D** decaying to Ds ~2.5:~6:~1.5

Summary

- First b-physics paper on LHCb using semileptonic B decays for the b-cross section.
- We have observed the main components of the b semileptonic decay width.
 - Provides essential information for b fragmentation fraction determination.
- These measurements will be important for a deep understanding of the Cabibbo favoured *sl* width in B_s & other *b*-hadrons.
 - Upon which precision CKM (in B_s and Λ_b), and A_{SL} measurements will be based.
- LHCb resolution and phase space coverage good for CKM studies.

WGII Lattice Request

- Exclusive semileptonic B_s exclusive decays are not yet described on the lattice.
 - Calculations exist for Λ_b .
 - We need form factor normalisation input from lattice for high precision interpretations.
 - For both, Cabibbo favoured (Ds/Ds*) and suppressed modes(K/K*).

Systematics

• Cross section systematics highly dependent on absolute normalisation (i.e. luminosity, tracking efficiency, branching fractions, and fragmentation fraction).

Source	Error $(\%)$	Source	Error $(\%)$
Luminosity	10.0	Prompt & Dfb shapes	1.4
Tracking efficiency	10.0	$\mathcal{B}\left(D^0 \to K^- \pi^+\right)$	1.3
$\mathcal{B}(b \to D^0 X \mu^- \overline{\nu})$	5.1	$D^0\mu^-$ vertex χ^2 cut	1.2
Assumed branching fractions	4.4	Kaon identification	1.2
LEP fragmentation fractions	4.2	Muon fakes	1.0
Generated $b p_{\rm T}$ distribution	3.0	D^0 mass cut	1.0
Muon identification	2.5	D^0 vertex χ^2 cut	0.6
$\chi^2_{ m IP} { m cut}$	2.5	D^0 flight distance cut	0.4
MC statistics	1.5	Pion identification	0.3
Total		17.3%	

