Status of SIMBA

Frank Tackmann

Massachusetts Institute of Technology

CKM Workshop University of Warwick, September 6-10, 2010

Florian Bernlochner, Heiko Lacker, Zoltan Ligeti, Iain Stewart, FT, Kerstin Tackmann

< 67 >

Global Fit to $B \rightarrow X_S \gamma$

Outlook on $|V_{ub}|$

Global Fit Approach to $B o X_s \gamma$ and $B o X_u \ell u$

Our aim: Provide global fit that combines all available information

- Simultaneously determine
 - Overall normalization: $|V_{ub}|, \mathcal{B}(B \rightarrow X_s \gamma)$
 - Required input parameters: m_b, shape function
 - \Rightarrow Same strategy as for $|V_{cb}|$ (but a bit more complicated now)
- Combine different decay modes and measurements
 - Different $B o X_s \gamma$ spectra
 - Different $B \rightarrow X_u \ell \nu$ partial BFs (or even better spectra)
 - Eventually also $B \to X_s \ell^+ \ell^-$
 - External constraints on m_b, μ_π^2 (λ_1) (from $B \to X_c \ell \nu$ or other)

What we gain from a global fit

- Minimize uncertainties by making maximal use of all available data
- Consistent treatment of correlated uncertainties (experimental, theoretical, input parameters)

< A >

Outline

A Little Bit of Theory

2 Global Fit to $B o X_s \gamma$

< **∂** >

Outline

A Little Bit of Theory

2) Global Fit to $B o X_s \gamma$

3 Outlook on $|V_{ub}|$

Frank Tackmann (MIT)

CKM 2010 1 / 18

< **∂** >

Requirements on Theory

Model-independent framework for shape function

- Small uncertainties have to be reliable uncertainties
- SF uncertainty should reflect the actual information we have
 - Perturbative constraints (RGE running and perturbative tail)
 - Constraints on moments from m_b , μ_{π}^2 (λ_1)
 - ▶ Shape information from $B \to X_s \gamma$ and $B \to X_u \ell \nu$ spectra

Different measurements probe different phase-space regions

- SF region: large E_{γ} , E_{ℓ} (near peak/endpoint)
- Local OPE region: small E_{γ} , E_{ℓ} , large q^2
- Something in between: $m_X \sim m_D$, moderately large E_γ, E_ℓ
- \Rightarrow Combination of optimal theory descriptions for each region

< 67 >

Global Fit to $B \rightarrow X_s \gamma$

Outlook on $|V_{ub}|$

Factorized Shape Function

[Ligeti, Stewart, FT (2008)]

$$S(\omega,\mu_\Lambda) = \int\!\mathrm{d}k\,\widehat{C}_0(\omega-k,\mu_\Lambda)\,\widehat{F}(k)$$

$\widehat{F}(k)$ nonperturbative part

- Determines peak region
- Fit from data

$\widehat{C}_0(\omega,\mu_\Lambda)$ perturbative part

 Generates perturbative tail consistent with RGE

Global Fit to $B \rightarrow X_s \gamma$

Outlook on $|V_{ub}|$

Factorized Shape Function

[Ligeti, Stewart, FT (2008)]

$$S(\omega,\mu_\Lambda) = \int\!\mathrm{d}k\,\widehat{C}_0(\omega-k,\mu_\Lambda)\,\widehat{F}(k)$$

$\widehat{F}(k)$ nonperturbative part

- Determines peak region
- Fit from data
- $\Rightarrow \text{ If we know } \widehat{F}(k) \text{ we can compute} \\ S(\omega, \mu_{\Lambda}) \text{ in perturbation theory}$
 - Vary μ_{Λ} to estimate perturbative uncertainty in SF (Here: $\mu_{\Lambda} = (1.0, 1.3, 1.8)$ GeV
 - + RGE up to $\mu = 2.5 \, \mathrm{GeV})$

$\widehat{C}_0(\omega,\mu_\Lambda)$ perturbative part

 Generates perturbative tail consistent with RGE

Global Fit to $B \to X_s \gamma$

Outlook on $|V_{ub}|$

Different Short Distance Schemes

 \widehat{C} and \widehat{F} defined in certain short distance scheme (can use any m_b scheme)

$$S(\omega) = \int dk C_0^{\text{pole}}(\omega - k) F^{\text{pole}}(k)$$

$$= \int dk C_0^{1S}(\omega - k) F^{1S}(k)$$

$$= \int dk C_0^{\text{kin}}(\omega - k) F^{\text{kin}}(k)$$

$$= \int dk C_0^{\text{SF}}(\omega - k) F^{\text{SF}}(k)$$

$$= \int dk C_0^{\text{SF}}(\omega - k) F^{\text{SF}}(k)$$

$$= \int dk C_0^{\text{SF}}(\omega - k) F^{\text{SF}}(k)$$

Moments of $\widehat{F}(k)$ given by respective SD parameters \widehat{m}_b , $\widehat{\lambda}_1$, etc. to all orders in α_s , e.g.

$$\int \mathrm{d}k \, k^n \, F^{1S\mathrm{i}}(k) = M_n = \begin{cases} 1 & (n=0) \\ m_B - m_b^{1S} & (n=1) \\ -\lambda_1^{\mathrm{i}}/3 + (m_B - m_b^{1S})^2 & (n=2) \end{cases}$$

Basis Expansion for $\widehat{F}(k)$

Expand $\widehat{F}(k)$ into suitable orthonormal basis

$$\widehat{F}(\lambda x) = rac{1}{\lambda} iggl[\sum\limits_{n=0}^{\infty} c_n f_n(x) iggr]^2
onumber \ \int \mathrm{d} k \, \widehat{F}(k) = \sum\limits_{n=0}^{\infty} c_n^2 = 1$$

Provides model-independent description

Fit for $\widehat{F}(k)$ by fitting basis coefficients c_n

- Experimental uncertainties and correlations are captured in covariance matrix of fitted coefficients c_n
- ⇒ Allows for *data driven*, reliable estimation of SF uncertainties

Basis functions 1 0.5 0 -0.5 -1 0 0.5 1 1.5 2 2.5 3 3.5 4 x

Residual Basis Dependence from Series Truncation

$$\widehat{F}(\lambda x) = rac{1}{\lambda} iggl[\sum\limits_{n=0}^N c_n f_n(x) iggr]^2$$

In practice, series must be truncated

- Induces residual basis (model) dependence
- Truncation error scales as $1 \sum c_n^2$

Optimal N and λ are determined from data

- Choose λ so series converges quickly
- Choose N so truncation error is small compared to exp. uncertainties
- Add more terms with more precise data
- ⇒ Must be careful not to "overtune"

Global Fit to $B \to X_S \gamma$

Outlook on $|V_{ub}|$

Master Formula for Differential Spectra

Outline

A Little Bit of Theory

2 Global Fit to $B o X_s \gamma$

3 Outlook on $|V_{ub}|$

Frank Tackmann (MIT)

< **∂** >

Global Fit to $B o X_s \gamma$

A Little Bit of Theory

Current status of experiment to theory comparison

• HFAG extrapolation down to $E_{\gamma}^{\rm cut} = 1.6 \, {\rm GeV}$ (adds model dependence)

 ${\cal B}(E_{\gamma}>1.6\,{
m GeV})=(3.55\pm0.24\pm0.09) imes10^{-4}$

• Fixed-order NNLO estimate by Misiak et al. (2006)

 ${\cal B}(E_{\gamma}>1.6\,{
m GeV})=(3.15\pm0.23) imes10^{-4}$

Sensitivity to new physics lies in normalization, parametrized by $|V_{tb}V_{ts}^*C_7^{\text{incl}}|$

- Most sensitivity in data comes from large E_{γ}
- Fit determines both $|V_{tb}V_{ts}^*C_7^{\text{incl}}|$ (normalization) and $\widehat{F}(k)$ (shape)
 - Can directly compare $|V_{tb}V_{ts}^*C_7^{\text{incl}}|$ to its SM prediction
 - Avoids any extrapolation

< A >

Theory Inputs

$$\begin{split} \mathrm{d}\Gamma_s \propto |V_{tb}V_{ts}^*|^2 m_b^2 \bigg\{ \big| C_7^{\mathrm{incl}} \big|^2 \Big[\big(\widehat{W}_{77}^{\mathrm{sing}} + \widehat{W}_{77}^{\mathrm{nons}} \big) \otimes \widehat{F} + \sum_n W_{77,n} F_n^{\mathrm{subl}} \Big] \\ + \sum_{i,j \neq 7} \Big[\mathrm{Re}(C_7^{\mathrm{incl}}) 2 C_i \widehat{W}_{7i}^{\mathrm{nons}} + C_i C_j \widehat{W}_{ij}^{\mathrm{nons}} \Big] \otimes \widehat{F} + \cdots \bigg\} \end{split}$$

Leading C_7^2 contribution

- Included at full NNLL+NNLO (in 1S short-distance scheme)
- 1/mb subleading shape functions absorbed into leading one
 - Have large impact on extracted value of m_b

Contributions from other operators $\sim C_i C_7, C_i C_j$

- Largest effects come from virtual corrections, are absorbed into C₇^{incl}
 - Important charm-mass effects only enter SM prediction for C₇^{incl}
- Remaining perturbative contributions included at NLO
 - Some NNLO are known, but NLO already have very small effect

< 67 >

Belle $605 \, \mathrm{fb}^{-1}$

- Thanks to Belle, especially Antonio Limosani, for providing the covariance matrix, experimental efficiency and resolution!
- Efficiency and resolution effects folded into theory predictions

BABAR sum-over-exclusive-modes (80 fb⁻¹), hadronic tag (210 fb⁻¹)

- Correlations are available
- Spectra efficiency corrected, resolution not an issue
- Thanks to Francesca Di Lodovico and Henning Flächer

< 67 >

ttle Bit of Theory	Global Fit to $B ightarrow X_{S} \gamma$	Outlook on $ V_{ub} $
0000	0000000	

Fit Setup

 χ^2 Fit

- Includes all experimental correlations
- Extensively validated with pseudo experiments
 - Just having a good χ^2/ndf is not enough

Shape function basis
$$\widehat{F}(\lambda x) = rac{1}{\lambda} iggl[\sum\limits_n c_n f_n(x) iggr]^2$$

- Default basis parameter: $\lambda = 0.5 \, \text{GeV}$
- Include up to 5 basis coefficients (c₀ to c₄)
- Fix $\sum_n c_n^2 = 1$ to enforce correct normalization $\int \mathrm{d}k \widehat{F}(k) = 1$

Disclaimer: What I am showing is active work in progress

- Numbers still subject to change
- Theoretical uncertainties not yet included in the fit

< A >

Events [10³/50 MeV]

Fit Results

Global Fit to $B \rightarrow X_{S} \gamma$ 00000000 Outlook on $|V_{ub}|$

Convergence of Basis Expansion

• Uncertainties underestimated with too few coefficients (c_{0,1})

- Would need to include additional uncertainty due to truncation
- Very little change from including 5th coefficient (c₄)
 - Truncation uncertainty negligible compared to other uncertainties

< 67 →

Global Fit to $B \rightarrow X_s \gamma$

Outlook on $|V_{ub}|$

- Equivalent to fixed model with fitted 1st moment
- All with good χ^2/ndf : 37.5/40, 28.8/40, 27.8/40
- ⇒ Uncertainties underestimate model dependence

Global Fit to $B \to X_S \gamma$ 00000000 Outlook on $|V_{ub}|$

Global Fit to $B o X_S \gamma$

Outlook on $|V_{ub}|$

Global Fit to $B \rightarrow X_s \gamma$

Outlook on $|V_{ub}|$

Global Fit to $B \rightarrow X_{S} \gamma$

Outlook on $|V_{ub}|$

Effect of Perturbative and $1/m_b$ Corrections

- NNLL+NNLO corrections move result up
- Subleading shape functions cause substantial shift in m_b given by their 1st moment

$$rac{-\lambda_1+3\lambda_2}{2m_b}\sim 70\,{
m MeV}$$

< 67 >

Outline

A Little Bit of Theory

2) Global Fit to $B o X_s \gamma$

< **∂** >

1

Additional Complications for $B \to X_u \ell \nu$

$$\mathrm{d}\Gamma_{u} \propto |V_{ub}|^{2} iggl\{ ig(\widehat{W}_{u}^{\mathrm{sing}} + \widehat{W}_{u}^{\mathrm{nons}}ig) \otimes \widehat{F} + \sum_{n} W_{u,n} \widehat{F}_{n}^{\mathrm{subl}} + \cdots iggr\}$$

- Combining different phase-space regions for triple differential spectrum
 - ► E.g. $\widehat{W}_{u}^{\text{sing}}$ known to $\mathcal{O}(\alpha_{s}^{2})$ but $\widehat{W}_{u}^{\text{nons}}$ only to $\mathcal{O}(\alpha_{s}, \alpha_{s}^{2}\beta_{0})$
- Subleading SFs are more tricky, cannot be absorbed anymore
 - Different $B \to X_u \ell \nu$ spectra would help

Proof-of-concept fit

- BABAR $m_X, m_X q^2, p_X^+, \, E_\ell^\Upsilon \geq 2.2 \, {
 m GeV}$
- Belle $m_X, E_\ell^\Upsilon \geq 2.3\,{
 m GeV}$
- $B \rightarrow X_s \gamma$ spectra
- Theory: NLL+NLO, no 1/mb

Wishlist for experiments (or: if you want your measurement to be used ...)

- Correlations for spectra (or between partial branching fractions)
- Correction matrices if spectra are significantly affected by efficiency and resolution

Global Fit to $B \rightarrow X_{s} \gamma$

- ⇒ Right now this unfortunately excludes a lot of valuable inputs
 - ► B_{ABAR} leptonic-tag $B \rightarrow X_s \gamma$ spectrum (updated analysis soon)
 - BABAR E_{ℓ}^{Υ} partial BFs
 - Belle hadronic-tag partial BFs

Getting More Out of Existing Data

There is much more information we can gain from $\sim 1\,{\rm ab}^{-1}$ of Belle and $B\!AB\!AR$ data

- $B \rightarrow X_u \ell \nu$ spectra will help further constrain m_b and leading (subleading) SF
- Precise E_{ℓ} spectrum (maybe with cut on m_X) would be very useful

Outlook on |V_{ub}|

Global Fit to B	$\rightarrow X_s \gamma$		
00000000			

Summary

Global fit to $B \to X_s \gamma$ and $B \to X_u \ell \nu$ with a model-independent treatment of the shape function

- Minimizes uncertainties by making maximal use of available data
- SF and its uncertainties are determined by the data
 - No hidden or underestimated uncertainties from model dependence
- Eliminate extrapolation for comparison to the $B
 ightarrow X_s \gamma$ rate
- \Rightarrow Will be key to precision $\mathcal{B}(B \to X_s \gamma)$ and $|V_{ub}|$ from super B factory

To reduce theory/parameter uncertainties with improved measurements now

- Measure (almost) the total rate, also has drawbacks:
 - Have to pay with (much) larger systematic uncertainties
 - Theory uncertainty creeps back in via signal MC model
- Measure $B \rightarrow X_u \ell \nu$ spectra with correlations (no drawbacks)
- ⇒ Ideally, should do both. With limited manpower the second option keeps potential for future improvements open.

Outlook on |Vub|

< 🗗 >