CKM Fit and Model independent constraints on physics Beyond the Standard Model

Achille Stocchi (LAL-Universite Paris-Sud/Orsay) On behalf of the UTFit Collaboration

http://www.utfit.org

6th International Workshop on the CKM Unitarity Triangle (Physics Department of the University of Warwick 6-10 Sept. 2010)

Global Fit within the SM

-0.5

Consistence on an over constrained fit of the CKM parameters

$$\overline{\rho} = 0.132 \pm 0.020$$

$$\bar{\eta} = 0.358 \pm 0.012$$

CKM matrix is the dominant source of flavour mixing and CP violation

-0.5

0.5

These fits are continuously updated.

There are two statistical methods to perform these fits. The overall agreement between them is satisfactory, unless there is some important disagreement

Problem on γ combination

γ (many ADS/GLW/Dalitz..) measurements are all consistent

Most precise measurements (two Dalitz analyses) have an about 15° error

- Combining the measurements with
- → the statistical method (frequentist) used by the Collaborations or UTfit we consistently get $\sigma(\gamma) \sim (11-12)^{\circ}$ (UTFit/stat. analysis a la Babar/Belle)
- → CKMfitter statistical treatment you get

Error on γ from CKMFitter is 2-3 times larger wrt the frequentist/bayesian method give due to their particular statistical treatement

 $\sigma(\gamma) \sim (20-30)^{\circ}$

CKMFitter

Is the present picture showing a Model Standardissimo?

An evidence, an evidence, my kingdom for an evidence

From Shakespeare's Richard III

In this talk we address the question by examine :

- 1) Possible tensions in the present SM Fit?
- 2) Fit of NP- $\Delta F=2$ parameters in a Model "independent" way
- 3) "Scale" analysis in $\Delta F=2$

 γ , α , Δm_s deviations within 1σ

ϵ_{K}

Three "news" ingredients

1) Buras&Guadagnoli BG&Isidori corrections

$$\boldsymbol{\varepsilon_{K}} = \sin \phi_{\varepsilon} e^{i\phi_{\varepsilon}} \left[\frac{\operatorname{Im} M_{12}^{(6)}}{\Delta m_{K}} + \beta_{\xi} \right]$$

- → Decrease the SM prediction by 6%
- 2) Improved value for BK → BK=0.731 0.07±0.35
- 3) Brod&Gorbhan charm-top contribution at NNLO

 → enanchement of 3%

 (not included yet in this analysis)

sin2β

 $sin2\beta=0.654\pm0.026$ From direct measurement

 $sin 2\beta = 0.771 \pm 0.036$ from indirect determination

+2.6σ deviation

You have to consider the theoretical error on the $sin 2\beta$

0.021 (CPS)(2005-updated)
- 0.047 (FFJM)(2008)

agreement 2.2σ 1.6σ

$Br(B \rightarrow \tau \nu)$

Br(B $\rightarrow \tau \nu$) =(1.72± 0.28)10⁻⁴ From direct measurement

Br(B $\rightarrow \tau \nu$) =(0.805± 0.071)10⁻⁴ SM prediction

-3.2σ deviation

Nota Bene

- \rightarrow To accommodate Br(B \rightarrow $\tau\nu$) we need large value of V_{ub}
- \rightarrow To accommodate sin2 β we need lower value of V_{ub}

Summary Table of the Pulls

	Prediction	Measurement	Pull
γ	(69.6 3.1)	(74 11)	-0.4
α	(85.4 3.7)	(91.4 6.1)	-0.8
sin2β	0.771 0.036	0.654 0.026	+2.6 → +2.2
$V_{ub} [10^3]$	3.55 0.14	3.76 0.20 *	-0.9
$V_{cb} [10^3]$	42.69 0.99	40.83 0.45 *	+1.6
$\varepsilon_{\mathrm{K}}[10^3]$	1.92 0.18	2.23 0.010	-1.7
$Br(B \rightarrow \tau \nu)$	0.805 0071	1.72 0.28	-3.2
$\Delta m_s (ps^{-1})$	17.77 0.12	18.3 1.3	-0.4

^{*} Both in V_{cb} and V_{ub} there is some tensions between Inclusive and Exclusive determinations. The measurements shown is the average of the two determinations

NP model independent Fit $\Lambda F=2$

Parametrizing NP physics in $\Delta F=2$ processes

$$C_{m{q}}e^{2im{\phi}_{m{d}}}=rac{A_{\Delta B=2}^{NP}+A_{\Delta B=2}^{SM}}{A_{\Delta B=2}^{SM}}$$

Soares, Wolfenstein PRD47; Deshpande, Dutta, Oh PRL77; Silva, Wolfenstein PRD55; Cohen et al. PRL78; Grossman, Nir, Worah PLB407; Ciuchini et al. @ CKM Durham

2	$\Delta m_d^{EXP} = C_{B_d} \Delta m_d^{SM}$	$f(\rho, \eta, C_{B_d}, QCD)$
	$A_{CP}(J/\Psi, K^{0}) = \sin(2\beta + 2\phi_{B_{d}})$	$f(ho,\eta,\phi_{\!_{B_d}})$
	$lpha^{\it EXP}=lpha^{\it SM}-\phi_{\it B_d}$	$f(ho,\eta,\phi_{_{B_d}})$
	$\mid \varepsilon_{\scriptscriptstyle K} \mid^{\scriptscriptstyle EXP} = C_{\scriptscriptstyle arepsilon} \mid \varepsilon_{\scriptscriptstyle K} \mid^{\scriptscriptstyle SM}$	$f(\rho, \eta, C_{\varepsilon}, QCD)$

$$\Delta m_s^{EXP} = C_{B_s} \Delta m_s^{SM} \qquad f(\rho, \eta, C_{Bs}, QCD..)$$

$$A_{CP}(J/\Psi,\phi) = \sin(2\beta_s - 2\phi_{B_s}) \qquad f(\rho,\eta,\phi_{B_s})$$

Tree
processes

 $1 \leftrightarrow 3$ family

 $2 \leftrightarrow 3$ family

 $1 \leftrightarrow 2$ familiy

	ρ,η	$\mathbf{C}_{\mathbf{d}}$	φ_d	C_s	φ_{s}	$C_{\epsilon K}$
γ (DK)	X					
$ m V_{ub}/V_{cb}$	X					
$\Delta m_{ m d}$	X	X				
ACP (J/ΨK)	X		X			
ACP $(D\pi(\rho),DK\pi)$	X		X			
${f A}_{ m SL}$		X	X			
α (ρρ,ρπ,ππ)	X		X			
\mathbf{A}_{CH}		X	X	X	X	
$\tau(\mathrm{Bs}), \Delta\Gamma_{\mathrm{s}}/\Gamma_{\mathrm{s}}$				X	X	
$\Delta m_{_{ m S}}$				X		
ASL(Bs)				X	X	
ACP (J/Ψ φ)	~X				X	
$\epsilon_{ m K}$	X					X

5 new free parameters $C_s, \phi_s \quad B_s \text{ mixing}$ $C_d, \phi_d \quad B_d \text{ mixing}$ $C_{\epsilon K} \quad K \text{ mixing}$

Today:
fit is overcontrained
Possible to fit 7 free parameters $(\rho, \eta, C_d, \phi_d, C_s, \phi_s, C_{\epsilon K})$

 ρ,η fit quite precisely in NP- ΔF =2 analysis and consistent with the one obtained on the SM analysis [error double]

(main contributors tree-level γ and V_{ub})

Please consider these numbers when you want to get CKM parameters in presence of NP in ΔF =2 amplitudes (all sectors 1-2,1-3,2-3)

$$C_{B_d}e^{2i\phi_{B_d}} = \frac{A_{\mathrm{SM}}e^{2i\beta} + A_{\mathrm{NP}}e^{2i(\beta + \phi_{\mathrm{NP}})}}{A_{\mathrm{SM}}e^{2i\beta}}$$

With present data $A_{NP}/A_{SM}=0$ @ 1.5 σ

 $A_{NP}/A_{SM} \sim 0-30\%$ @95% prob.

New results tends to reduce the deviation

New: CDF new measurement reduces the significance of the disagreement.

Likelihood not available yet for us.

New: $a_{\mu\mu}$ from D0 points to large βs , but also large $\Delta\Gamma s \rightarrow$ not standard Γ_{12} ??

-70F

(NP in Γ_{12} / bad failure of OPE in Γ_{12} .. Consider that it seems to work on Γ_{11} (lifetime)

 A_s^{NP}/A_s^{SM}

Effective Theory Analysis $\Delta F=2$

Effective Hamiltonian in the mixing amplitudes

$$H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_{i}(\mu) Q_{i}(\mu) + \sum_{i=1}^{3} \widetilde{C}_{i}(\mu) \widetilde{Q}_{i}(\mu)$$

$$Q_1 = \overline{q}_L^{\alpha} \gamma_{\mu} b_L^{\alpha} \overline{q}_L^{\beta} \gamma^{\mu} b_L^{\beta} \quad (SM/MFV)$$

$$Q_2 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_R^{\beta} b_L^{\beta} \qquad Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$$

$$\widetilde{Q}_{1} = \overline{q}_{R}^{\alpha} \gamma_{\mu} b_{R}^{\alpha} \overline{q}_{R}^{\beta} \gamma^{\mu} b_{R}^{\beta}$$

$$\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$$
 $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$

$$Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$$

$$Q_4 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_L^{\beta} b_R^{\beta} \qquad Q_5 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$$

$$\widetilde{O}_{\alpha} = \overline{a}_{x}^{\alpha} b_{x}^{\beta} \overline{a}_{x}^{\beta} b_{x}^{\beta}$$

$$F_1 = F_{SM} = (V_{tq}V_{tb}^*)^2$$

 $F_{j=1} = 0$

$$|F_j| = F_{SM}$$

arbitrary phases

$$C_{j}(\Lambda) = \frac{LF_{j}}{\Lambda^{2}} \Rightarrow \Lambda = \sqrt{\frac{LF_{j}}{C_{j}(\Lambda)}}$$

$C(\Lambda)$ coefficients are extracted from data

L is loop factor and should be:

L=1 tree/strong int. NP

 $L=\alpha_s^2$ or α_W^2 for strong/weak perturb. NP

MFV

NMFV

Flavour generic

Main contribution to present lower bound on NP scale come from $\Delta F{=}2$ chirality-flipping operators ($Q_4)$ which are RG enhanced

Preliminary

From Kaon sector @ 95% [TeV]				
Scenario	Strong/tree	$\alpha_{\rm s}$ loop	$\alpha_{ m W}$ loop	
MFV (low tanβ)	8	0.8	0.24	
MFV (high tanβ)	4.5	0.45	0.15	
NMFV	107	11	3.2	
Generic	~470000	~47000	~14000	

From Bd&Bs sector @ 95% [TeV]				
Scenario	Strong/tree	$\alpha_{\rm s}$ loop	α_{W} loop	
MFV (high tan β)	6.4	0.6	0.2	
NMFV	8	0.8	0.25	
Generic	3300	330	100	

Conclusions

CKM matrix is the dominant source of flavour mixing and CP violation $\sigma(\rho) \sim 15\% \ \sigma(\eta) \sim 4\%$

Nevertheless there are tensions here and there that should be continuously and quantitatively monitored : $\sin 2\beta$ (+2.2 σ), ϵ_K (-1.7 σ), Br(B $\rightarrow \tau \nu$) –(3.2 σ)

To render these tests more effective we need to improved the single implied measurements but also the predictions

Model Independent fit show some discrepancy on the NP phase parameters ϕ_{Bd} = -(3.1 \pm 1.7)° ϕ_{Bs} = (-20 \pm 8)° U (-68 \pm 8) °

Effective Theory analysis quantify the known "flavor problem".