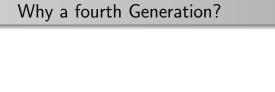
Flavour physics with a 4th generation

Tillmann Heidsieck

Technical University of Munich (TUM)


CKM 2010 Warwick, September 9th, 2010

Outline

- Introduction
- 2 Rare B and K decays, CP Violation
- 3 Lepton Flavour Violation
- 4 Conclusions

A. Buras, B. Duling, T. Feldmann, T.H., C. Promberger, S. Recksiegel 1002.2126 1004.4565

(Without S.R) 1006.5356

Why a fourth Generation?

Why not?

The SM4 highlights

- ullet Consider a fourth, sequential generation of quarks (t',b')
- The CKM matrix has to be generalised to a four generation model, thereby the model is described by a set of 10 parameters

$$\theta_{12}\,,\;\theta_{13}\,,\;\theta_{14}\,,\;\theta_{23}\,,\;\theta_{24}\,,\;\theta_{34}\,,\;\delta_{13}\,,\;\delta_{14}\,,\;\delta_{24}\,,\;m_{t'}$$

- The operator structure does not change
- Currently there are the following (rough) bounds on the new parameters

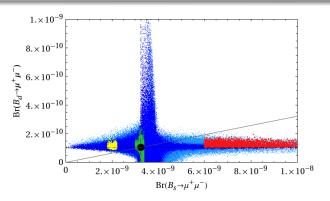
$$s_{14} \le 0.04$$
, $s_{24} \le 0.17$, $s_{34} \le 0.27$,
 $300 \text{GeV} \le m_{t'} \le \text{Min} \left(\frac{600 \text{GeV}}{M_W/|s_{34}|} \right)$

Chanowitz et. al. Phys. Rev. D 79 (2009) 113008

More sophisticated bounds on the mixing angles

EBERHARD ET AL. (2010)

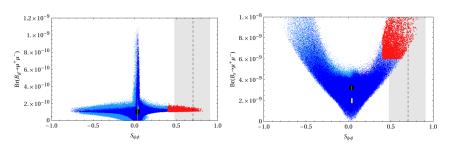
Take into account all contributions to the S and T parameters


- ullet Strong correlation between s_{14} and s_{24} from FCNC constraints
- ullet Correlation between s_{34} and $m_{t'}$ from EWPT

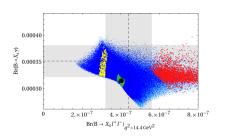
Colour-Coding

	BS1 (yellow)	BS2 (green)	BS3 (red)
$S_{\psi\phi}$	0.04 ± 0.01	0.04 ± 0.01	≥ 0.4
$Br(B_s \to \mu^+\mu^-)$	$(2 \pm 0.2) \cdot 10^{-9}$	$(3.2 \pm 0.2) \cdot 10^{-9}$	$\geq 6 \cdot 10^{-9}$

light blue stands for ${\rm Br}(K_L \to \pi^0 \nu \bar{\nu}) > 2 \cdot 10^{-10}$ dark blue stands for ${\rm Br}(K_L \to \pi^0 \nu \bar{\nu}) \leq 2 \cdot 10^{-10}$

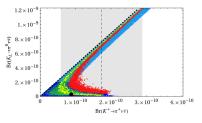

A first look at rare B decays, $Br(B_q \to \mu^+ \mu^-)$

- Big enhancements in ${\rm Br}(B_q \to \mu^+ \mu^-)$ possible but not simultaneously
- non-CMFV nature of the SM4 clearly seen in this correlation
- Maximal deviations possible if one of ${\rm Br}(B_q o \mu^+ \mu^-)$ is SM3 like


 $\operatorname{Br}(B_q \to \mu^+ \mu^-) \text{ vs. } S_{\psi\phi}$

$$\varphi_{B_s}^{\rm tot} = -(0.39^{+0.18}_{-0.14}) \ \left[-(1.18^{+0.14}_{-0.18}) \right] \tag{HFAG} \label{eq:posterior}$$

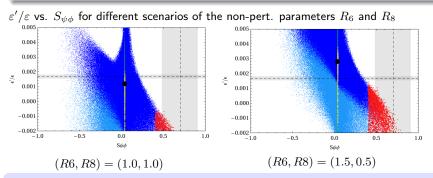
- Enhancement of $S_{\psi\phi}>0.5$ implies enhancement of ${\rm Br}(B_s\to\mu^+\mu^-)$ together with ${\rm Br}(B_d\to\mu^+\mu^-)\sim(1-2)\cdot10^{-10}$
- For small $S_{\psi\phi}$ a suppression of ${\rm Br}(B_s \to \mu^+\mu^-)$ is also possible


$B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$

- ${\rm Br}(B \to X_s \gamma)$ was calculated at LO for $\mu_{\rm eff} = 3.22 {\rm GeV}$ to have the LO formula mimic the NNLO result
- $\operatorname{Br}(B \to X_s \ell^+ \ell^-)$ was calculated at NLO and rescaled to mimic the corresponding (partial) NNLO result

The correlation is not as strong as for other observables, but the measurement of ${\rm Br}(B_s \to \mu^+ \mu^-)$ would highly constrain the allowed area.

$\operatorname{Br}\left(K_L \to \pi^0 \nu \bar{\nu}\right) \text{ vs. } \operatorname{Br}\left(K^+ \to \pi^+ \nu \bar{\nu}\right)$


- Enhancement by orders of magnitude possible!
- ullet Only mild correlation with the B system
- For big enhancements of ${\rm Br}\left(K_L\to\pi^0\nu\bar{\nu}\right)$, ${\rm Br}\left(K^+\to\pi^+\nu\bar{\nu}\right)$ is enhanced too, but the reverse is not true
- The lower branch is tightly constrained through ${\rm Br}\,(K_L \to \mu^+ \mu^-)_{\rm SD}$

Br
$$(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp.}} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$$

E949 Collab., Phys. Rev. Lett. 101 (2008) 191802

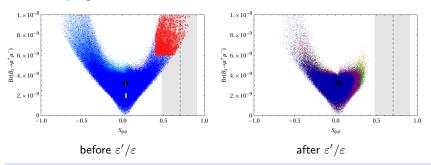
ε'/ε and $S_{\psi\phi}$...there is a connection after all

- \circ ε'/ε very well measured
- Theoretically demanding due to the importance of non-pert. corrections.

- In general the SM4 can satisfy ε'/ε for any set of hadronic parameters
- For $S_{\psi\phi}>0.4$ we need special values of R6 and R8 in order to reproduce the data

Taking ε'/ε as a constraint: Preliminaries

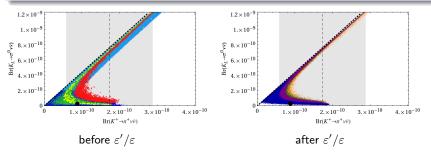
What happens if we take ε'/ε as a constraint?


Procedure:

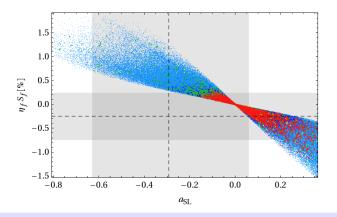
- Turn the argument around and assume one of our scenarios for R6, R8 to be correct.
- Take a very conservative error for ε'/ε and use ε'/ε as a constraint.
- Colour code:

R_6	R_8	
1.0	1.0	dark blue
1.5	0.8	purple
2.0	1.0	green
1.5	0.5	orange

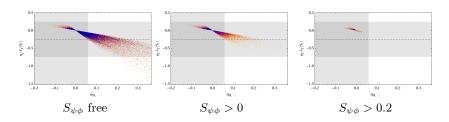
ε'/ε as a constraint


- ullet For $S_{\psi\phi}>0$ the t and t' contributions (Z penguins) are both negative and cancel out the QCD penguins
- \bullet B8 < 1 lessens the influence of the Z penguin, while B6 > 1 strengthens the QCD penguins

- ε'/ε constrains $S_{\psi\phi}$ asymmetrical
- For ε'/ε to agree with the data concurrently with $S_{\psi\phi}\gg 0$, we need $R6>1,\ R8<1$ and $R6/R8\sim 3$.

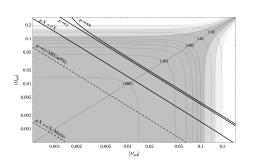

ε'/ε as a constraint II

- As anticipated ε'/ε poses a constraint on $K\to\pi\nu\nu$, but much milder than usual
- Close to the GN bound spectacular enhancements of ${\rm Br}(K_L \to \pi \nu \bar{\nu})$ are still possible


- lacktriangle Reminder: Operator structure not changed, but CKM elements might differ their SM values, esp. V_{ts} and V_{td}
- ${\color{blue} \bullet} \ \operatorname{Im} \lambda_t^{(K)}$ can be enhanced, which helps to circumvent bounds from ε'/ε

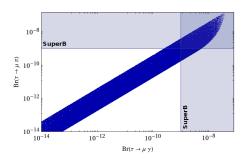
CP Violation in $D^0 - \bar{D}^0$ ($\eta_f S_f^D$ vs. $a_{\rm SL}^D$)

- Big deviations from the SM3 prediction (close to zero for both) are possible
- three-way correlation between $\eta_f S_f^D$, $a_{
 m SL}^D$ and ${
 m Br}(K_L o \pi^0
 u ar{
 u})$


arepsilon'/arepsilon and $S_{\psi\phi}$ or how to kill CP-violation in $D^0-ar{D}^0$

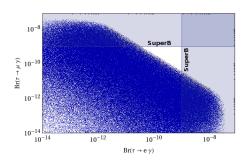
- With ε'/ε as a constraint, from left to right the possible CPV vanishes
- ε'/ε clearly diminishes CPV in the D^0 system, even without a constraint coming from $S_{\psi\phi}$
- Imposing different $S_{\psi\phi}$ constraints further shrinks the possible CPV in the D^0 system, however it is still by orders of magnitude above the SM prediction.

LFV mixing & constraints



- Lepton universality: $|U_{e4}| \sim |U_{u4}|$
- Radiative decays: $|U_{e4}U_{u4}^*|$ small

- ullet Lepton universality (shaded areas) provides a stringent bound on the matrix elements U_{e4} and $U_{\mu4}$
- The radiative decays provide an orthogonal set of constraints
- Future experiments on $\mu \to e \gamma$ and $X \mu \to X e$ can push both matrix elements below 1%


LFV: prospects I

- \bullet Both decays are $|U_{\tau 4}^* U_{\mu 4}|$ and m_{ν_4} dependent
- The additional CKM dependence of $\mu\pi$ turns out to be small

- Strong correlation, saturates current bounds.
- If was measured the other would have to be around the same order of magnitude

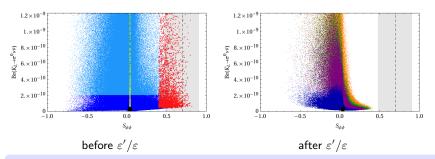
LFV: prospects II

- ullet $au o \mu \gamma$: $|U_{ au 4}^* U_{\mu 4}|$ and $m_{
 u_4}$ dependent
- $au o e \gamma$: $|U_{ au 4}^* U_{e 4}|$ and $m_{
 u_4}$ dependent

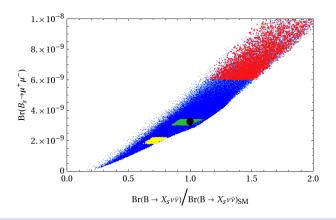
- Mild correlation between $au o \mu \gamma$ and $au o e \gamma$ through $\mu o e \gamma$ and lepton universality
- Future and current bounds are saturated

Messages and Conclusions

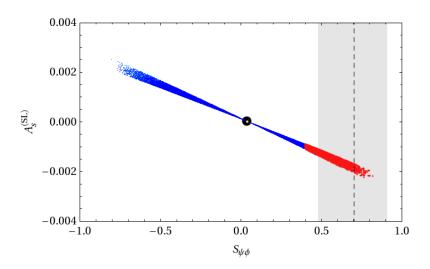
The SM4 provides a set of interesting features


- Both ${\rm Br}(B_s \to \mu^+ \mu^-)$ and ${\rm Br}(B_d \to \mu^+ \mu^-)$ can be increased/decreased compared to the SM3 but not simultaneously
- For $S_{\psi\phi}\gg 0$ an enhancement of ${\rm Br}(B_s\to\mu^+\mu^-)$ is needed
- A suppression of ${\rm Br}(B_s \to \mu^+ \mu^-)$ is possible for $S_{\psi\phi}$ SM3 like
- In $Br(K_L \to \pi^0 \nu \bar{\nu})$ and $Br(K^+ \to \pi^+ \nu \bar{\nu})$ there is, independently of the B system, still much room for big enhancements
- ε'/ε could become a very important constraint, if R6 and R8 were known to moderate accuracy
- \bullet CP violation in the $D^0-\bar{D}^0$ system can be drastically diminished through the interplay of ε'/ε and $S_{\psi\phi}$
- LFV with a fourth generation is highly predictive due to the very small number of parameters

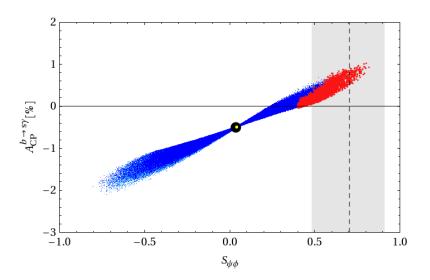
Backup Start


Backup

ε'/ε as a constraint III


- ullet From no correlation to a strong correlation (for $S_{\psi\phi}>0$)
- For $S_{\psi\phi}\gg 0$ no big enhancements of ${
 m Br}(K_L o\pi
 uar
 u)$

$B o X_s u \bar{ u}$ and $B_s o \mu^+ \mu^-$



- $B o X_s \nu \bar{\nu}$ and $B_s o \mu^+ \mu^-$ are strongly correlated
- \bullet A similar correlation between $B\to X_s\nu\bar{\nu}$ and $B\to X_s\ell^+\ell^-$ exists

Semileptonic asymmetry $a_{\rm SL}^{(s)}$ in B_s

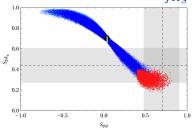
CP violation in $b \to s \gamma$

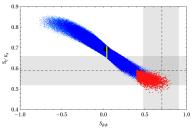
Time-dependent CP Asymmetries Preliminaries

G. Buchalla, G. Hiller, Y. Nir, G. Raz, JHEP 09 (2005) 074

$$A_f = A_f^c \left(1 + a_f^u e^{i\gamma} + \sum_i \left(b_{fi}^c + b_{fi}^u e^{i\gamma} \right) C_i^{\text{NP}} \left(M_W \right) \right)$$

$$|A_f|e^{i\varphi_f} \approx A_f^c \left(1 + r_f \frac{\lambda_{t'}^{(s)}}{\lambda_t^{(s)}}\right)$$

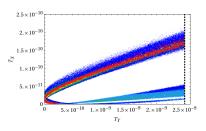

- $ullet b^c_{fi}, b^u_{fi}$ from non-pert. QCD
- \bullet ratio a_f^u of SM amplitudes


$$r_{\phi K_S} = -0.248 \ Y_0(x_{t'}) + 0.004 \ X_0(x_{t'}) + 0.075 \ Z_0(x_{t'}) - 0.7 \ E'_0(x_{t'})$$

$$S_f = -\eta_f \sin \left[2 \left(\varphi_{B_d}^{\text{tot}} + \varphi_f \right) \right]$$

S_{fK_S} as a function of $S_{\psi\phi}$

The SM4 provides the 'right' correlation to accommodate the most recent measurements for S_{fK_S} and $S_{\psi\phi}$



- LO approximation of the hadronic parameters involved, no strong phase.
- Enhancement of $S_{\psi\phi}$ is always accompanied by a suppression of both $S_{\phi K_S}$ and $S_{\eta' K_S}$.
- A more detailed analysis of the involved hadronic parameters would be desirable.

Constraining $Br(K \to \pi \nu \bar{\nu})$ through $Br(K_L \to \mu^+ \mu^-)_{SD}$

$$T_Y \equiv \text{Br}(K_L \to \mu^+ \mu^-)_{\text{SD}}$$

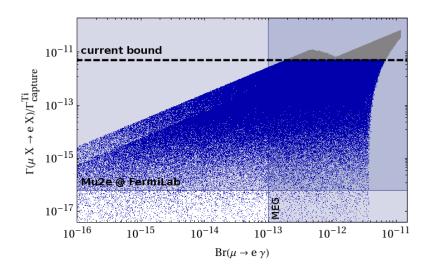
 $T_X \equiv \text{Br}(K^+ \to \pi^+ \nu \bar{\nu}) - \frac{\kappa_+}{\kappa_L} \text{Br}(K_L \to \pi^0 \nu \bar{\nu})$

- T_Y and T_X are strongly correlated
- ${\rm Br}(K_L o \pi^0
 u \bar{
 u})$ does not get directly constrained

Br
$$(K_L \to \mu^+ \mu^-)_{SD} < 2.5 \cdot 10^{-9}$$
 G. ISIDORI ET. AL. JHEP 01 (2004) 009

Full formulae

$$S_{i} = S_{0}(x_{t}) + \frac{\eta_{t't'}^{(i)}}{\eta_{tt}^{(i)}} \left(\frac{\lambda_{t'}^{(i)}}{\lambda_{t}^{(i)}}\right)^{2} S_{0}(x_{t'}) + 2 \frac{\eta_{tt'}^{(i)}}{\eta_{tt}^{(i)}} \left(\frac{\lambda_{t'}^{(i)}}{\lambda_{t}^{(i)}}\right) S_{0}(x_{t}, x_{t'})$$


$$+ 2 \frac{\eta_{ct'}^{(i)}}{\eta_{tt}^{(i)}} \left(\frac{\lambda_{c}^{(i)} \lambda_{t'}^{(i)}}{\lambda_{t}^{(i)2}}\right) S_{0}(x_{t'}, x_{c})$$

$$T_{Y} \equiv \text{Br}(K_{L} \to \mu^{+}\mu^{-})_{\text{SD}} = 2.08 \cdot 10^{-9} \left(\frac{\text{Re}\lambda_{c}^{(K)}}{|V_{us}|} P_{c}(Y_{K}) + \frac{\text{Re}(\lambda_{t}^{(K)} Y_{K})}{|V_{us}|^{5}}\right)^{2}$$

$$\text{Br}(K^{+} \to \pi^{+}\nu\bar{\nu}) = \kappa_{+} \left[\left(\frac{\text{Im}(\lambda_{t}^{(K)} X_{K}^{\ell})}{|V_{us}|^{5}}\right)^{2} + \left(\frac{\text{Re}\lambda_{c}^{(K)}}{|V_{us}|} P_{c}^{\ell}(X) + \frac{\text{Re}(\lambda_{t}^{(K)} X_{K}^{\ell})}{|V_{us}|^{5}}\right)^{2}\right]$$

$$T_{X} = \text{red part}$$

LFV: prospects I

