Flavour Physics in two-Higgs-doublet models

Martin Jung

Instituto de Física Corpuscular - IFIC, CSIC-UVEG, Valencia

CKM2010 - 6th International Workshop on the CKM Unitarity Triangle Flavour in 2HDMs

M. Jung

Outline

Motivation

Models

Phenomenology

Conclusions

Flavour in 2HDMs

M. Jung

lotivation lodels

. . .

Motivation

Last few years shift of focus: CKM mechanism main source of (low energy) CP violation ✓

Concentration on new physics

- Direct search is being performed at the LHC
- Flavour physics complementary tool
 - High sensitivity, even beyond LHC reach
 - But: Flavour data still compatible with SM
 Flavour Puzzzle

Flavour in 2HDMs

M. Jung

Tensions

Present tensions in the global CKM fit:

- $\sin 2\beta_{B\to\tau\nu}$ vs. $\sin 2\beta|_{B\to J/\psi K^{(*)}}$
- ► (ε_K, depending on inputs and statistical treatment)

Tensions in the neutral B systems:

- Phase in B_s → J/ψφ (however: 2.xσ →~ 1σ recently)
- Like-sign dimuon charge asymmetry

Not discussed here:

. . .

- |V_{ub}| exclusive vs. inclusive
- Pattern of $B \rightarrow \pi K \ CP$ asymmetries
- Neutrino physics
- Astrophysical constraints

 $R(B\to \tau\nu)$ °⊽ E Flavour in 2HDMs

M. Jung

Why 2HDM?

EW symmetry breaking mechanism unknown yet:

- 1HDM minimal and elegant, but unlikely (SUSY,GUTs,...)
- ► 2HDM:
 - "next-to-minimal"
 - ρ-parameter "implies" doublets
 - simple structure, but interesting phenomenology
 - Iow-energy limit of more complete NP models

affects all of the mentioned tensions (if new CPV sources present)

Elayour in 2HDMs

Lots of 2HDMs...

General 2HDM:

$$-\mathcal{L}_Y^q = \bar{Q}'_L(\Gamma_1\phi_1 + \Gamma_2\phi_2) \, d'_R + \bar{Q}'_L(\Delta_1\widetilde{\phi}_1 + \Delta_2\widetilde{\phi}_2) \, u'_R + \text{h.c.}$$

 Γ_i, Δ_i : Independent 3×3 coupling matrices

Flavour problem: generic couplings imply huge NP scale

Most common solution: Applying a discrete \mathcal{Z}_2 symmetry:

- Eliminates two couplings, hence tree-level FCNCs
- Different charge assignments lead to "Type I,II,X,Y"
- Only one new parameter in the flavour sector: $\tan \beta$
- Type II SUSY-motivated: Bulk of analyses (Recently: El Kaffas et al. '07, GFitter '08, CKMfitter '09, UTfit '09)
- However: no new source of CP violation

Models/frameworks without \mathcal{Z}_2 symmetry:

• Type III:
$$Y'_{ij} \sim \sqrt{\frac{m_i m_j}{v^2}}$$
, e.g. Mahmoudi/Stål '09

Flavour in 2HDMs

M. Jung

Beyond Z_2

► Aligned two-Higgs-doublet model (Pich/Tuzón '09): Alignment $\Gamma_2 = \xi_d e^{-i\theta} \Gamma_1$, $\Delta_2 = \xi_u^* e^{i\theta} \Delta_1$ leads to

$$-\mathcal{L}_{Y,H^{\pm}}^{q} = \frac{\sqrt{2}}{v} H^{+}(x) \bar{u}(x) \left[\varsigma_{d} V M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d(x) + \text{h.c.}$$

with complex, observable parameters $\varsigma_{u,d,l}$, implying:

- No FCNCs at tree-level
- New sources for CP violation
- Only three complex new parameters (unlike Type III)
- Z₂ models recovered for special values of ς'_is
- Radiative corrections symmetry-protected, of MFV-type
- 2HDM with MFV (D'Ambrosio et al. '02):
 - EFT framework, unknown couplings
 - Spurion formalism with flavour-blind phases: can be used to arrive at the A2HDM (1st term in series)
 - Recently: Expansion around Type II (as '02 as well) with phases and decoupling (Buras et al. '10). See also Paradisi/Straub, Kagan et al., Botella et al., Feldmann/MJ/Mannel, Colangelo et al., all '09
- ▶ BGL models (Branco et al. '96), Ferreira/Silva '10, ...

Flavour in 2HDMs

M. Jung

General Strategy

Problem twofold:

- Understand SM hadronic process
- Determine NP influence

In the process:

- Perform UT analysis independent of NP considered
- Choose statistical treatment (RFit in CKMfitter, GFitter and A2HDM plots)
- ▶ Determine hadronic inputs
 ▶Theory input (Lattice, QCD sum rules, *χ*PT,...)
- Determine overall compatibility and parameter ranges for scenario considered

Usually publications differ in all these steps

In the following: Mostly A2HDM, comments on differences

Flavour in 2HDMs

M. Jung

Leptonic decays

Leptonic decays affected on tree-level by charged Higgs:

$$rac{\Gamma(P^+_{ij}
ightarrow l^+
u_l)_{
m full}}{\Gamma(P^+_{ij}
ightarrow l^+
u_l)_{
m SM}} = |1 - \Delta_{ij}|^2$$

i, j: valence quarks of the meson under consideration and

$$\Delta_{ij} = \left(\frac{m_{P_{ij}^{\pm}}}{M_{H^{\pm}}}\right)^2 \varsigma_I^* \frac{\varsigma_u m_{u_i} + \varsigma_d m_{d_j}}{m_{u_i} + m_{d_j}}$$

- Impact large due to helicity suppression in SM
- Results in circles in the complex Δ_{ij} -plane
- NP influence decreases for lighter mesons
- Comparison:
 - ▶ Type II: $\Delta > 0$ or $\sim 0 \rightarrow \Gamma_{\rm full} \lesssim \Gamma_{SM}$ ($\Delta \sim 2$ excluded)
 - Assuming decoupling: $\Delta \sim$ 0, $B \rightarrow \tau \nu$ used in UT fit
 - Type III, A2HDM: $\Gamma_{NP} > \Gamma_{SM}$ possible w/o large $|\Delta|$

Flavour in 2HDMs

Semileptonic decays of pseudoscalar mesons

- ▶ Helicity suppression absent in SM
 ▶Smaller relative influence of NP (m_ℓ suppression)
- Extraction of CKM elements unaffected
- Form-factor dependence, hence more involved
- Scalar form-factor affected through

$$ilde{f}_0(t) \,=\, f_0(t) \, \left(1 + \delta_{ij} \, t
ight) \,, \quad \delta_{ij} \,\equiv\, - rac{\varsigma_l^*}{M_{H^\pm}^2} \, rac{\varsigma_u m_{u_i} - \varsigma_d \, m_{d_j}}{m_{u_i} - m_{d_j}}$$

Example $B \to D\tau\nu$:

- Type II: m_s term dominant (tan β² enhanced)
- A2HDM: Both terms relevant
- In both cases: Helps excluding second (real) solution
- For details, here and in the following: MJ/Pich/Tuzón '10

Flavour in 2HDMs

M. Jung

Combination of (semi-)leptonic constraints

Flavour in 2HDMs

M. Jung

Motivation Models

Phenomenology

- Only combinations $\delta_{u/dl} = \varsigma_{u,d} \varsigma_l^* / M_{H^{\pm}}^2$ constrained
- ► Resulting "bananas" exclude the second real solution (with δ_{dl} help needed)
- $\delta_{dl} \lesssim$ 0.1, δ_{ul} constraint weaker (but see later)
- ▶ Projection on Type II: δ_{dl} translates to tan $\beta \lesssim 0.1 \frac{M_{H^{\pm}}}{GeV}$

$b ightarrow s\gamma$

Famous for NP-sensitivity:

- FCNC process, loop-induced already in the SM
- H^{\pm} effects expected to be large (tops in the loop)
- BR calculated to ~NNLO (NLO) in the SM (2HDM) (Misiak et al.(many!) '07, Ciuchini et al. '97, Ciafaloni et al. '97, Borzumati/Greub '98, Degrassi/Slavich '10)
- Experimental accuracy \sim 7%, thanks to B-factories

• Type II:
$$\varsigma_u \varsigma_d^* = -1$$
: mainly limit on M_H

► A2HDM: $\zeta_{u,d}$ independent \rightarrow more freedom $|\zeta_u \zeta_d| \lesssim 20$ limit, but locally much stronger

M. Jung Motivation Models

Flavour in 2HDMs

Phenomenology

Constraints from mixing

Large effects expected in top loops: Effects in $\Delta m_{d,s}, \phi_{d,s}, \epsilon_K$

Also: Possible effects in $b \rightarrow s$ with new phase (A2HDM) $B_s \rightarrow J/\psi\phi, B_d \rightarrow J/\psi K$ not necessarily "golden"

Kaon mixing:

- \blacktriangleright Two SM amplitudes relevant \rightarrow no NP phase needed
- Recent updates: improved non-perturbative corrections [Buras et al. '08,'10] and NNLO in η_{ct} [Brod/Gorbahn '10]

Completely different phenomenology:

- Type II: Basically no effect
- MFVfb: dito, tiny effect from \mathcal{O}_{LR}^2
- ► A2HDM: Releatively strong limit on |ζ_u| through O_{VLL}

Flavour in 2HDMs

M. Jung

Mixing in the B system

Effects are again very different for the different scenarios:

- ▶ In Type II neither $\phi_{d,s}$ nor $\Delta m_{d,s}$ affected (sizably)
- In MFVfb large effects expected, again via \mathcal{O}_{LR}^2 :
 - $S_q = S_0(x_t) T_q$ with $T_q \sim 64\pi^2 m_b m_q / M_H^2$ $\succ S_{\psi\phi}$ can take any value with $\mathcal{O}(1)$ coefficient
 - $T_d^{T_s} = m_d / m_s \sim \% \rightarrow \text{small effect (right direction)}$
- A2HDM: large (sizable) effect in $\Delta m_{d,s}$ ($\phi_{d,s}$) possible:
 - $\mathcal{O}(1)$ effect for $\mathcal{O}_{\textit{VLL}}$ w/o phase $o \Delta_{d,s}$
 - ▶ 10 40% effect for \mathcal{O}_{SLL} with weak phase $\rightarrow \phi_{d,s}$
 - Both contributions universal for q = d, s : Δ_d ≃ Δ_s
 Δm_s/Δm_d still usable in UT fit

Flavour in 2HDMs

M. Jung

Projections

Models with \mathcal{Z}_2 symmetry are limits of the A2HDM:

Flavour in 2HDMs M. Jung

Motivation Models Phenomenology Conclusions

2.0

Conclusions and outlook

Conclusions:

- 2HDMs active field, new developments
- Type II: best constrained, but no effect in $\phi_{d,s}$
- MFVfb:
 - EFT framework, systematic expansion
 - Buras et al. '10: Expansion around Type II, decoupling
 - $S_{J/\psi\phi}(A^b_{sl})$ can be explained, softens tension $\epsilon_K S_{J/\psi K}$
- A2HDM:
 - New CPV possible with sufficient FCNC suppression(!)
 - Rich phenomenology, only three new flavour-parameters
 - Present tensions can be addressed; moderate enhancement of A^b_{sl} possible

Outlook:

- Interesting times (as Guy put it: Here comes the sun!)
 Observables for LHC(b), SuperB (!), BES-III, NA-62,...
- ► A2HDM: Analysis of neutral Higgs effects in progress...
- Next CKM might see limits changing to determinations

Flavour in 2HDMs

M. Jung

Public protests about to change the picture?

Flavour in 2HDMs

M. Jung

Backupslides

Radiative corrections in the A2HDM

Flavour in 2HDMs

M. Jung

Motivation Models

Conclusions

- Neutron EDM in the A2HDM
- Experimental data used
- Hadronic inputs

Radiative corrections in the A2HDM

Symmetry structure forces the (one-loop) corrections to be of the form [MJ/Pich/Tuzon '10, Cvetic et al. '98]

$$\mathcal{L}_{\text{FCNC}} = \frac{C(\mu)}{4\pi^2 v^3} \left(1 + \varsigma_u^* \varsigma_d\right) \times \\ \times \sum_i \varphi_i^0(x) \left\{ \left(\mathcal{R}_{i2} + i \,\mathcal{R}_{i3}\right) \left(\varsigma_d - \varsigma_u\right) \left[\bar{d}_L \, V^{\dagger} M_u \, M_u^{\dagger} \, V M_d \, d_R\right] - \\ - \left(\mathcal{R}_{i2} - i \,\mathcal{R}_{i3}\right) \left(\varsigma_d^* - \varsigma_u^*\right) \left[\bar{u}_L \, V M_d \, M_d^{\dagger} \, V^{\dagger} M_u \, u_R\right] \right\} + \text{h.c.}$$

- Vanish for \mathcal{Z}_2 symmetry
- FCNCs still strongly suppressed
- See also Braeuninger et al. '10, Ferreira et al. '10

Flavour in 2HDMs

M. Jung

One-loop contributions to neutron EDM have the structure

$$\begin{array}{ll} d_u & \propto & e \, (m_u/(4\pi\nu)^2) |V_{ui}|^2 (m_i/M_{H^\pm})^2 \\ d_d & \propto & e \, (m_d/(4\pi\nu)^2) |V_{id}|^2 (m_i/M_{H^\pm})^2 \end{array}$$

 Under control (see also Buras et al. '10, Batell/Pospelov '10,... (incomplete list))
 Two-loop diagrams important (Barr-Zee diagrams), but also sensitive to UV-completion
 Work in progress Flavour in 2HDMs

M. Jung

Observables

Observable	Value	
$ g_{RR}^{S} _{\tau \to \mu}$	< 0.72 (95% CL)	
${ m Br}(au o \mu u_{ au} ar{ u}_{\mu})$	$(17.36 \pm 0.05) imes 10^{-2}$	
${ m Br}(au o e u_{ au} \overline{ u}_{e})$	$(17.85\pm0.05) imes10^{-2}$	
${ m Br}(au o \mu u_ au ar{ u}_\mu)/{ m Br}(au o e u_ au ar{ u}_e)$	0.9796 ± 0.0039	
$\operatorname{Br}(B \to \tau \nu)$	$(1.73\pm0.35) imes10^{-4}$	
${ m Br}(D o \mu u)$	$(3.82\pm0.33) imes10^{-4}$	
$\operatorname{Br}(D \to \tau \nu)$	$\leq 1.3 imes 10^{-3}$ (95% CL)	
$\operatorname{Br}(D_s \to \tau \nu)$	$(5.58 \pm 0.35) imes 10^{-2}$	
$\operatorname{Br}(D_s \to \mu \nu)$	$(5.80 \pm 0.43) imes 10^{-3}$	
$\Gamma(K o \mu u) / \Gamma(\pi o \mu u)$	1.334 ± 0.004	
$\Gamma(\tau \to K\nu)/\Gamma(\tau \to \pi\nu)$	$(6.50\pm0.10) imes10^{-2}$	
log C	0.194 ± 0.011	
$Br(B \to D\tau\nu)/BR(B \to D\ell\nu)$	0.392 ± 0.079	
$\Gamma(Z \rightarrow b\bar{b})/\Gamma(Z \rightarrow hadrons)$	0.21629 ± 0.00066	
${ m Br}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 { m GeV}}$	$(3.55\pm0.26) imes10^{-4}$	
${ m Br}(\bar{B} \to X_c e \bar{\nu}_e)$	$(10.74 \pm 0.16) \times 10^{-2}$	
Δm_{B_0}	$(0.507 \pm 0.005) \ { m ps}^{-1}$	
$\Delta m_{B_2^0}^{"}$	$(17.77 \pm 0.12) \ { m ps}^{-1}$	
$ \epsilon_{\mathcal{K}} $	$(2.228\pm0.011) imes10^{-3}$	

Flavour in 2HDMs

lusions

Hadronic Inputs I

Flavour in 2HDMs

M. Jung

Motivation

Models

Phenomenology

Conclusions

Parameter	Value	Comment
f _{Bs}	$(0.242\pm 0.003\pm 0.022)~{ m GeV}$	Our average
f_{B_5}/f_{B_d}	$1.232 \pm 0.016 \pm 0.033$	Our average
f _{De}	$(0.2417 \pm 0.0012 \pm 0.0053)~{ m GeV}$	Our average
f_{D_s}/f_{D_d}	$1.171 \pm 0.005 \pm 0.02$	Our average
f_K/f_π	$1.192\pm 0.002\pm 0.013$	Our average
$f_{B_s} \sqrt{\hat{B}_{B_s^0}}$	$(0.266 \pm 0.007 \pm 0.032)~{ m GeV}$	
$f_{B_d}\sqrt{\hat{B}_{B_s^0}}/(f_{B_s}\sqrt{\hat{B}_{B_s^0}})$	$1.258 \pm 0.025 \pm 0.043$	
β _K	$0.732 \pm 0.006 \pm 0.043$	
V _{ud}	0.97425 ± 0.00022	
λ	0.2255 ± 0.0010	$(1 - V_{ud} ^2)^{1/2}$
$ V_{\mu b} $	$(3.8 \pm 0.1 \pm 0.4) \cdot 10^{-3}$	$b \rightarrow u l \nu$ (excl. + incl.)
A	$0.80 \pm 0.01 \pm 0.01$	$b \rightarrow c l \nu$ (excl. + incl.)
$\bar{\rho}$	$0.15 \pm 0.02 \pm 0.05$	Our fit
$\bar{\eta}$	$0.38 \pm 0.01 \pm 0.06$	Our fit

Table: Input values for the hadronic parameters. The first error denotes statistical uncertainty, the second systematic/theoretical.

Hadronic Inputs II

Parameter	Value	Comment
$\bar{m}_u(2 \text{ GeV})$	(0.00255 + 0.00075 - 0.00105) GeV	
$\bar{m}_d(2 \text{ GeV})$	$(0.00504 \stackrel{+ 0.00096}{- 0.00154})$ GeV	
$\bar{m}_s(2 \text{ GeV})$	(0.105 + 0.025 - 0.035) GeV	
$\bar{m}_c(2 \text{ GeV})$	$(1.27 + 0.07)_{-0.11}$ GeV	
$\bar{m}_b(m_b)$	(4.20 + 0.17 - 0.07) GeV	
$\bar{m}_t(m_t)$	$(165.1 \pm 0.6 \pm 2.1)$ GeV	
$\delta_{em}^{K\ell 2/\pi \ell 2}$	-0.0070 ± 0.0018	
$\delta_{em}^{\tau K2/K\ell2}$	0.0090 ± 0.0022	
$\delta_{\rm em}^{\tau \pi 2/\pi \ell 2}$	0.0016 ± 0.0014	
$\rho^2 _{B\to Dl\nu}$	$1.18 \pm 0.04 \pm 0.04$	
$\Delta _{B \to DI\nu}$	0.46 ± 0.02	
$f_{\pm}^{K\pi}(0)$	0.965 ± 0.010	
Ē ^L ₿ _{b.SM}	-0.42112 + 0.00035 - 0.00018	
κ_{ϵ}	0.94 ± 0.02	
Ē ^R _{b,SM}	0.07744 + 0.00006 - 0.00008	

Table: Input values for the hadronic parameters. The first error denotes statistical uncertainty, the second systematic/theoretical.

Flavour in 2HDMs

M. Jung

Motivation

Models

Phenomenology

Conclusions