CKM 2010, University of Warwick, UK



## WGV Summary γ from B to charm decays

## Robert Fleischer and Stefania Ricciardi on behalf of the speakers of WGV

## 12 Talks

Mainly experimental discussions: time-dependent and time-integrated measurements of  $\gamma$ 

#### Introduction and conclusions by theorists

Jure Zupan, The case for measuring gamma precisely *RUBIN, Ada, BaBar time-dependent gamma measurements* ONUKI, Yoshiyuki, Belle time-dependent gamma measurements GLIGOROV, Vladimir, LHCb time-dependent gamma measurements RICCIARDI, Stefania, Charm inputs to gamma measurements from CLEO HORII, Yasuyuki, Belle time-integrated gamma measurements MARCHIORI, Giovanni, BaBar time-integrated gamma measurements SQUILLACIOTI, Paola Tevatron time-integrated gamma measurements and prospects WILLIAMS, J Michael, LHCb time-integrated gamma measurements and prospects SPRADLIN, Patrick, Charm inputs for the next decade POLUEKTOV, Anton, Ultimate sensitivity on gamma/phi3 from B to DK FLEISCHER, Robert, Extracting gamma from Bs to J/psi Ks

WGV - γ from B to charm decays: what have we learnt?

- 1. The case for a very precise measurement of  $\boldsymbol{\gamma}$
- 2. New results from well-established methods
- 3. New methods (since CKM2008)
- 4. Future prospects (LHCb and beyond)

# Measuring γ with B to charm decays: definitions

- $\gamma$  is extracted from the interference between b  $\rightarrow$  c and b  $\rightarrow$  u transitions in decays of the B->DK family
  - tree-level amplitudes only
  - no penguin pollution, only one weak phase
  - Other B and D hadronic parameters in game, including B and D strong phases



Several clean methods to extract all unknowns from data (use combinations of several D modes or input from charm studies )

# How clean is γ from B to charm decays?

Beyond the usual mantra: Only tree-level amplitudes, No theoretical uncertainties, No NP contributions, SM standard candle

Stefania Ricciardi, STFC RAL



## Theory errors: D-mixing

[Grossman, Soffer, JZ, 2005] [Bondar, Poluektov, Vorobiev, arXiv 1004.2350]

- Assuming SM:
  - D-mixing is CP conserving in SM, hence error on  $\gamma$  is small
    - if D-mixing neglected -> error <1<sup>o</sup>
  - Most importantly: D-mixing effects can be included exactly if x<sub>D</sub> and y<sub>D</sub> precisely measured



### Theory errors: electroweak corrections

• Only contribution which can change CKM structure is from box diagrams



Shift in  $\gamma$  if different weak phase than leading order. Largest shift:  $\sim \frac{g^2}{16\pi^2} V_{cb} V_{cs}^* V_{us} \frac{m_c^2}{m_W^2} [A_B/(V_{cb} V_{us}^*)] \sim \frac{g^2}{16\pi^2} \frac{m_c^2}{m_W^2} A_B$ irreducible theory error on  $\gamma$  is  $\delta \gamma / \gamma \sim O(10^{-6})$ 

## **Current experimental precision**



- Error still very large
- Individual measurements more precise than CKM Fitter average
  - An issue here?
  - Not discussed at this workshop
  - Consensus: larger data sample will reduce disagreement between different statistical treatments
- Achieved precision much beyond Bfactory design, thanks (mainly) to
  - B-factories excellent performance
  - GGSZ method (new on the scene at CKM2003)

Smallest theoretical uncertainty but largest experimental error among all UT constraints!

## Results from well-established methods



2. Time-dependent methods

#### Several new results from B-factories and Tevatron .... NO signs of "dusk"yet! On the contrary...

#### $B^{\pm} \rightarrow D^{0}(K\pi)K^{\pm}$ with the ADS method

Atwood-Dunietz-Soni (ADS) method uses Doubly Cabibbo suppressed decays to enhance  $\gamma/\phi_3$ -sensitive interference terms

 $r_D^{K\pi} \approx 0.06$  similar magnitude to  $r_B \approx 0.1$ 



 $\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma)$  $\Gamma(B^{+} \to (K^{+}\pi^{-})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$ 

> Coefficients of interference terms similar order to rest of expression

Method can be extended to multibody since  $\delta_D^{K3\pi}$  is the average strong photon

 $\delta_{\! D}{}^{K3\pi}$  is the average strong phase difference over Dalitz space

$$\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$$

Coherence factor RK3m value between 0 (incoherent) and 1 (2 body single amplitude limit)

09 Sep 2010

Charm inputs to γ/φ<sup>3</sup> for the next decade Spradlin, CKM 2010 WG V, Warwick 4/13



 $B^{-} \rightarrow D(K^{+}\pi^{-})K^{-}$  and  $B^{+} \rightarrow D(K^{-}\pi^{+})K^{+}$  from Belle

 $|\Delta E| < 0.04 \text{ GeV}$ 

NB > 0.5

The results (R<sub>DK</sub> in 10<sup>-2</sup>) are

 $\mathcal{R}_{DK} = 1.62 \pm 0.42 (\text{stat})^{+0.16}_{-0.19} (\text{syst})$  $\mathcal{A}_{DK} = -0.39 \pm 0.26(\text{stat})^{+0.06}_{-0.04}(\text{syst})$ 

First evidence is obtained with a significance  $3.8\sigma$ (including syst).

NEW

## ADS results from CDF (5 fb<sup>-1</sup>)

 This supplements recently published first GLW analysis in hadron collisions within a CDF global program to measure angle gamma from trees.

Vield (B →  $D_{DCS}K$ ) = 34 ± 14 (5 fb<sup>-1</sup>) Vield (B →  $D_{DCS}π$ ) = 73 ± 16 (5 fb<sup>-1</sup>) Significance for all DCS signal ( $D_{DCS}\pi + D_{DCS}K$ ) > 5  $\sigma$ 

![](_page_11_Figure_4.jpeg)

![](_page_12_Picture_1.jpeg)

 $R_{ADS}(K) = \frac{N(B^- \to D^0_{DCS}K^-) + N(B^+ \to D^0_{DCS}K^+)}{N(B^- \to D^0_{CE}K^-) + N(B^+ \to D^0_{CE}K^+)}$ 

 $\mathcal{A}_{ADS}(K) = \frac{N(B^- \to D^0_{DCS}K^-) - N(B^+ \to D^0_{DCS}K^+)}{N(B^- \to D^0_{DCS}K^-) + N(B^+ \to D^0_{DCS}K^+)}$ 

#### Results

 $\begin{aligned} R_{ADS}(\pi) &= 0.0041 \pm 0.0008(stat) \pm 0.0004(syst) \\ A_{ADS}(\pi) &= 0.22 \pm 0.18(stat) \pm 0.06(syst) \\ R_{ADS}(K) &= 0.0225 \pm 0.0084(stat) \pm 0.0079(syst) \end{aligned}$ 

 $A_{ADS}(K) = -0.63 \pm 0.40(stat) \pm 0.23(syst)$ 

- First measurement of A<sub>ADS</sub> and R<sub>ADS</sub> at a hadron collider.
- Agrees with previous measurements from other experiments.

![](_page_12_Figure_7.jpeg)

## Time-integrated $\gamma$ at BaBar

#### GLW, ADS, and GGSZ measurements updated recently using full Y(4S) data set (468M BB pairs)

| Measurement    | CKM 2008 |                          | CKM 2010 |                                     | changes                                                                 |
|----------------|----------|--------------------------|----------|-------------------------------------|-------------------------------------------------------------------------|
|                | N(BB)    | pub. status              | N(BB)    | pub. status                         | changes                                                                 |
| GGSZ D(*)0K(*) | 383M     | PRD 78, 034023<br>(2008) | 468M     | arXiv:1005.1096<br>accepted by PRL  | updated Dalitz model,<br>added DK* (D→KsKK)                             |
| GLW D⁰K        | 382M     | PRD 77, 111102<br>(2008) | 467M     | arXiv:1007.0504<br>accepted by PRD  | improved fit technique,<br>added CL scan of γ                           |
| ADS D(*)0K     | 232M     | PRD 72, 032004<br>(2005) | 467M     | arXiv:1006.4241<br>submitted to PRD | improved fit technique,<br>better statistical analysis,<br>CL scan of γ |

![](_page_13_Figure_4.jpeg)

Stefania Ricciardi, STFC RAL

### Reminder: GGSZ or "Dalitz" method

- Exploits different interference pattern in the two D to  $K_s \pi \pi$  Dalitz plot (from  $B^+$  and  $B^-$ )
- CLASSIC APPROACH : amplitude fit to the B event densities in the D Dalitz plots

![](_page_14_Figure_3.jpeg)

• D-decay amplitude determined from a flavour-tagged sample from  $D^{*+} \rightarrow D^0 \pi^+$  using model assumptions

![](_page_15_Picture_0.jpeg)

 $D(K,\pi\pi)K$ 

Babar

D(K<sub>K</sub>KK)K

## GGSZ results from Belle and BaBar on full data set

$$\phi_3 = 78.4^{\circ} + 10.8^{\circ}_{-11.6^{\circ}} \pm 3.6^{\circ}(\text{syst}) \pm 8.9^{\circ}(\text{model})$$

$$\begin{array}{c}\text{Belle}\\657\text{M BB}\end{array}$$

A. Poluektov et al., PRD 81, 112002 (2010)

$$\begin{array}{l} \gamma(\mathrm{mod180}^\circ) = (68 \pm 14 \pm 4 \pm 3)^\circ \\ \mathrm{stat} \ \mathrm{syst} \ \mathrm{model} \end{array} \begin{array}{l} \text{Babar} \\ \text{468M BB} \\ \mathrm{D}(\mathrm{K_s}\pi\pi)\mathrm{K} \end{array}$$

Still dominated by statistical error.

Improved model and much reduced model error from BaBar: 3 degrees.

Still model error hard to quantify .Will limit the precision of future high-statistics measurements using this method

## From "classic" to "modern" art: model independent methods

![](_page_16_Figure_1.jpeg)

Binned fit, no model assumptions: uses instead external binned information on  $\delta_{\rm D}$  from CLEO-c

September 16-20, 2010

Stefania Ricciardi, STFC RAL

## CLEO-c results on $\delta_{\mathsf{D}}$

#### First successes: $K_s \pi \pi$ and $K_s KK$

![](_page_17_Figure_2.jpeg)

11/13

SPRADLIN

RICCIARD

Stefania Ricciardi

See talk by

с О Ш

## Results from well-established methods – Part II

- I. Time-integrated methods
- II. Time-dependent methods Sensitive to  $sin(2\beta_{(s)} + \gamma)$  via interference in decay w and w/o mixing.

#### More results from B-factories...

![](_page_19_Picture_0.jpeg)

## Time-dependent at BaBar

Comprehensive review

•One on-going analysis  $B^0 \rightarrow D^{0(*)}K_s$ 

Several published measurements (to be updated to full data sample)

- 1) Partial Reconstruction of B to  $D^{*+}\pi^{-}$  (BaBar, PRD, 2005)
- 2) Full Reconstruction of B to  $D^{(*)+}\pi^{-}$  and  $D^{+}\rho^{-}$  (BaBar, PRD, 2006)
- 3) Dalitz plot analysis of  $B^{0}$ ->D<sup>+</sup>K<sup>0</sup> $\pi$  (BaBar, PRD, 2008)

![](_page_19_Figure_8.jpeg)

Extraction of  $sin(2\beta+\gamma)$  from 2) and 3) requires external constraint on r = ratio of suppressed over favoured amplitude (very small)

$$r = \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{*+}\pi^-)}{\mathcal{B}(B^0 \to D^{*-}\pi^+)}} \frac{f_{D^*}}{f_{D^*_s}} \tan(\theta_C) \Rightarrow 0.015^{+0.004}_{-0.006} + 30\%$$

30% systematic to account from SU(3) breaking and factorization

Stefania Ricciardi, STFC RAL

![](_page_20_Picture_0.jpeg)

## Time-dependent: Belle

- Two recent results for  $R_{D^*\pi}$ 
  - Using isospin relations (Belle, PRL 2008) 1.

$$R_{D^*\pi} = \sqrt{\frac{\tau_{B^0}}{\tau_{B^+}}} \frac{2\mathcal{B}(B^+ \to D^{*+}\pi^0)}{\mathcal{B}(B^0 \to D^{*-}\pi^+)}$$

$$R_{D^*\pi} < 0.051(90\% C.L)$$

Dominated by statistical error on BF(B  $\rightarrow$  D\* $\pi^{0}$ ) (UL)

2. Using SU(3) flavour symmetry assumptions

$$R_{D^*\pi} = \tan\theta_C \left(\frac{f_{D^*}}{f_{D^*_s}}\right) \sqrt{\frac{\mathcal{B}(B^0 \to D^{*+}_s \pi^-)}{\mathcal{B}(B^0 \to D^{*-} \pi^+)}}$$

 $R_{D^*\pi} = 1.58 \pm 0.15 \pm 0.10 \pm 0.03\%$ PRD81(2010)031101 stat. syst. th. error

 $R_{D\pi} = 1.71 \pm 0.11 \pm 0.09 \pm 0.02\%$ stat. syst. th. error

arXiv:1007.34619

NEW

Most precise determinations but possible non-factorizable SU(3) breaking effects not completely accounted for in theory errors

Stefania Ricciardi, STFC RAL

## Time-dependent: $B_s \rightarrow D_s K$ at LHCb

![](_page_21_Figure_2.jpeg)

# New methods for the measurement of $\gamma$

1. 
$$B^0 \rightarrow DK^+\pi^-$$
  
2.  $B_s \rightarrow D\phi$   
3.  $B_s \rightarrow J/\psi\phi$ 

### Reminder: $\gamma$ from B<sup>0</sup> $\rightarrow$ D<sup>0</sup>K<sup>\*0</sup> Neutral GLW/ADS

The neutral analog of  $B^{\pm} \rightarrow D(hh)K^{\pm}$ , the decays  $B^{0} \rightarrow D(hh)K^{*0}$ , can also be used to determine  $\gamma$  due to the interference b/t amplitudes where the  $D/\bar{D}$  decay to the same final state.

![](_page_23_Figure_2.jpeg)

- Good: both diagrams are color suppressed (r<sub>B<sup>0</sup></sub> ≈ 3 × r<sub>B<sup>±</sup></sub>); increased interference increases the sensitivity on γ.
  - Bad: the  $K^*$  interferes w/ the  $B \rightarrow DK\pi$  background; effective hadronic parameters must be introduced (reduces sensitivity).

### Another powerful Dalitz plot analysis B<sup>0</sup> $\rightarrow$ DK<sup>+</sup> $\pi^{-}$ and prospects at LHCb

![](_page_24_Picture_1.jpeg)

Exploits resonance structure in the Dalitz plot from the selftagged B<sup>0</sup> multibody decay

- contains flavor specific  $D_2^{*-}(2460) \rightarrow \overline{D}^0 \pi^-$
- interf. with other resonances
   (e.g. B<sup>0</sup> → DK<sup>\*0</sup>) gives γ
- many choices for  $D \rightarrow f$  still
- equivalent of GLW does not need CP-odd D →Ksπ<sup>0</sup> decays (that is difficult for LHCb) Expect σ<sub>ete</sub>(γ)~1

J. Zupan The case for measuring gamma...

**Expect**  $\sigma_{stat}(\gamma) \sim 11^{\circ}$  with 1/fb at LHCb(2011) Estimated with assumptions on the DP model to be assessed on early LHCb data [measure branching ratios of main resonance components ]

![](_page_24_Figure_9.jpeg)

Gershon,2008 Gershon and Williams, 2009 Gershon and Poluektov,2009

## Exploiting $B_s$ production at LHCb: $\gamma$ from $B_s \rightarrow D\phi$ (untagged)

The strange analog of  $B^0 \to DK^{*0}$ , the decays  $B_s \to D\phi$ , can also be used to determine  $\gamma$  using the GLW/ADS method.

![](_page_25_Figure_2.jpeg)

Large CP asymmetry, very small background

Expected yields in 1  $fb^{-1}$  @ 7 TeV (2011 running) $B_s + \bar{B}_s \rightarrow D_{fav}\phi$  $B_s + \bar{B}_s \rightarrow D(K3\pi)\phi$  $B_s + \bar{B}_s \rightarrow D_{CP+}\phi$  $\sim 200$  $\sim 200$  $\sim 25$ Expect  $\sigma_{\gamma} \sim 17^{\circ}$  (see CERN-LHCB-PUB-2010-005)

Including  $\Delta\Gamma_{\rm s}$  corrections (from Zupan)

Stefania Ricciardi, STFC RAL

**WILLIAMS** 

#### Another decay with a promising physics potential: $B_s \rightarrow J/\psi K_s$ (time-dependent)

[R.F., Eur. Phys. J. C 10 (1999) 299 [arXiv:hep-ph/9903455]]

U-spin partner of the "golden"  $B_d \rightarrow J/\psi K_s$ Sensitivity to  $\gamma$  from interference between tree and penguin ( suppressed for  $B_d$  but not for  $B_s$ )

With assumption on U-spin flavour symmetry  $\gamma$  and penguin decay parameters (a, $\theta$ ) can be extracted

$$A(B_s^0 \to J/\psi K_s) = -\lambda \mathcal{A} \left[ 1 - a e^{i\theta} e^{i\gamma} \right]$$

 $B^0_{\circ}$ 

 $J/\psi$ 

 $K_{\rm S}$ 

$$\mathcal{A} \equiv \lambda^2 A \left[ A_{\rm T}^{(c)} + A_{\rm P}^{(c)} - A_{\rm P}^{(t)} \right], \quad a e^{i\theta} \equiv R_b \left[ \frac{A_{\rm P}^{(u)} - A_{\rm P}^{(t)}}{A_{\rm T}^{(c)} + A_{\rm P}^{(c)} - A_{\rm P}^{(t)}} \right]$$

$$A \equiv |V_{cb}|/\lambda^2, \quad R_b \equiv \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \left|\frac{V_{ub}}{V_{cb}}\right|$$

Stefania Ricciardi, STFC RAL

FLEISCHER

 $J/\psi$ 

 $K_{\rm S}$ 

c

colour singlet

exchange

Z, u, c,

W

 $\mathbf{s}$ 

![](_page_27_Picture_0.jpeg)

## $B_s \rightarrow J/\psi K_s$ : feasibility studies at LHCb

![](_page_27_Figure_2.jpeg)

Our LHCb feasibility study shows:

– The  $B_{s,d} \rightarrow J/\psi K_{\rm S}$  strategy offers another extraction of  $\gamma$ .

- The major application will be the control of the penguin effects in  $(\sin 2\beta)_{J/\psi K_S}$ , which will allow us to match the experimental precision:

 $\rightarrow$  may eventually allow us to resolve NP in  $B^0_d - \bar{B}^0_d$  mixing.

# Visions for the next decade and beyond

# Comparison on experimental reach

![](_page_29_Figure_1.jpeg)

 $20 imes 10^{12}$  produced  $B\overline{B}$  pairs detection efficiency < 1%. B/S typically O(1)

SuperB:

 $50 \times 10^9$  produced  $B\overline{B}$  pairs detection efficiency O(100%) clean signals

## 'Super-γ' (~2020 AD)

- $\bullet\,$  Various independent methods should allow for  $\sim 1-3^\circ\,$  measurement with SuperB and upgraded LHCb:
  - ADS + GLW modes
  - $B \rightarrow D(K_S \pi \pi) K$  Dalitz analysis
  - Self-tagging  $B^0 
    ightarrow DK\pi$  modes
  - $B_s \rightarrow D_s K$  (LHCb only)
- Overall, LHCb sensitivity with 50 fb<sup>-1</sup> potentially looks better than that of SuperB, but higher backgrounds can reduce it. SuperB is more stable against "unlucky" parameter combinations when the sensitivity can be significantly reduced.
- Having a large ( $\sim$  10-20 fb<sup>-1</sup>) sample at charm threshold is desirable for an efficient use of *B* data:
  - Significant fraction of BES-III sample.
  - Dedicated charm-tau factory.
  - SuperB operated at low energy.

POLUEKTOV

## Back to near future: 2010-2012

By 2012 (next CKM?) expect to hear new exciting results on  $\gamma$  from B to charm decays from experiments at *hadron colliders*:

- CDF has demonstrated capability of hadron colliders with B to charm decays
- New ADS/GLW results (5/fb) results competitive with B-factories
- Exploration continues, double data-set by 2011 (Expect 10-12/fb)

•LHCb expects  $\sigma(\gamma) < 10^{\circ}$  degrees by end 2011, several promising measurements (~1/fb at 7TeV)

Excellent tracking, PID and trigger performance for these multihadron decay modes demonstrated with <1/pb of data collected and analysed this summer

![](_page_32_Figure_0.jpeg)

Similar significance expected for the "suppressed" ADS mode ( $B \rightarrow DK$ ) at LHCb with 3 order of magnitude larger data sample by the end of 2011

## Acknowledgements

Many other new results presented in these sessions. Apologies, could not show them all!

BIG THANKS to all the WGV SPEAKERS for the excellent talks and discussions!!

#### AND BIG THANKS to Warwick for the impeccable organisation!!!