Summary of WG4
 "Lifetime, mixing and weak mixing phase in charm and beauty, including direct determination of $V_{t x} "$

Conveners: M. Kreps ${ }^{1}$, A. Lenz², O. Leroy ${ }^{3}$

1. The University of Warwick, UK
2. Institut für Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany 3. CPPM Aix-Marseille Université IN2P3 CNRS, France

6-10 September 2010

CKM worshop, Warwick, UK

Outlines

(1) Introduction
(2) Beauty
(3) Charm
(4) Conclusions and prospects

Introduction

- Summarize 3 sessions and 13 talks (7 theory, 6 experiment)
- lifetime and mixing, weak mixing phases in B^{0} and $\mathrm{B}_{\mathrm{s}}^{0}$ systems, V_{tx}.

Contributing talks

- NIERSTE, Ulrich Lifetimes and mixing parameters of neutral B hadrons
- GARRON, Nicolas Lattice determination of $f_{B_{d}}, f_{B_{s}}$ and ξ
- KREPS, Michal Measurement of ϕ_{s} at CDF
- BORISSOV, Guennadi Measurement of ϕ_{s} at DØ
- HANSMANN-MENZEMER, Stephanie Measurement of ϕ_{s} at LHCb
- PETROV, Alexey CP violation in charm mixing, theory
- MALDE, Sneha Lifetimes and mixing parameters of neutral D mesons and neutral B hadrons, experiment
- MEADOWS, Brian CP violation in charm mixing (B-factories and Tevatron)
- GERSABECK, Marco CP violation in charm mixing (LHCb)
- CIUCHINI, Marco Measurements of $\sin (2 \beta)$ and $\cos (2 \beta)$, theory
- LI, Jin Measurement of CPV with $\mathrm{B}^{0} \rightarrow(\mathrm{c} \overline{\mathrm{c}}) \mathrm{K}^{0}$ and $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{h}^{0}$ decays
- ROHRWILD, Juergen Theoretical situation for $V_{\mathrm{td}}, V_{\mathrm{ts}}$ and V_{tb}
- WAGNER, Wolfgang Prospects for direct measurements of $\left|V_{\text {ts }}\right|$ and $\left|V_{\mathrm{tb}}\right|$

B mixing and lifetime I

The neutral $B_{q}(q=d, s)$ system is described by the following equation

$$
i \frac{d}{d t}\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}=\left(\hat{M}^{q}-\frac{i}{2} \hat{\Gamma}^{q}\right)\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}
$$

The famous box diagrams give rise to off-diagonal elements M_{12}^{q} and Γ_{12}^{q} in the mass matrix \hat{M}^{q} and the decay rate matrix $\hat{\Gamma}^{q}$

Diagonalization of \hat{M}^{q} and $\hat{\Gamma}^{q}$ gives the mass eigenstates

$$
\begin{array}{rll}
\text { CP-odd: } \quad B_{H}:=p B+q \bar{B} & , & \text { CP-even: } B_{L}:=p B-q \bar{B} \\
\text { with } & & |p|^{2}+|q|^{2}=1
\end{array}
$$

with the corresponding masses M_{H}^{q}, M_{L}^{q} and decay rates $\Gamma_{H}^{q}, \Gamma_{L}^{q}$

B mixing and lifetime II

$\left|M_{12}^{q}\right|,\left|\Gamma_{12}^{q}\right|$ and $\phi_{q}=\arg \left(-M_{12}^{q} / \Gamma_{12}^{q}\right)$ are related to three observables:

- Mass difference: $\Delta M_{q}:=M_{H}^{q}-M_{L}^{q}=2\left|M_{12}^{q}\right|\left(1+\frac{1}{8} \left\lvert\, \frac{\left|\Gamma_{12}^{q}\right|^{2}}{\left|M_{12}^{q}\right|^{2}} \sin ^{2} \phi_{q}+\ldots\right.\right)$ $\left|M_{12}^{q}\right|$: heavy virtual particles: t, SUSY, ...
- Decay rate difference:
$\Delta \Gamma_{q}:=\Gamma_{L}^{q}-\Gamma_{H}^{q}=2\left|\Gamma_{12}^{q}\right| \cos \phi_{q}\left(1-\frac{1}{8} \left\lvert\, \frac{\left|\Gamma_{12}^{q}\right|^{2}}{\left|M_{12}^{q}\right|^{2}} \sin ^{2} \phi_{q}+\ldots\right.\right)$
$\left|\Gamma_{12}^{q}\right|$: light real particles: u, c, ... no NP - below hadronic uncertainties
- Flavor specific / semi leptonic CP asymmetries:
${ }^{*} \bar{B}_{q} \rightarrow f$ and $B_{q} \rightarrow \bar{f}$ forbidden
* no direct CP violation: $\left|\left\langle f \mid B_{q}\right\rangle\right|=\left|\left\langle\bar{f} \mid \bar{B}_{q}\right\rangle\right|$
e.g. $B_{s} \rightarrow D_{s}^{-} \pi^{+}$or $B_{q} \rightarrow X I \nu$ (semi leptonic)

$$
a_{s l}^{q}=\operatorname{Im} \frac{\Gamma_{12}^{q}}{M_{12}^{q}}+\mathcal{O}\left(\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right)^{2}=\frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \phi_{q}+\mathcal{O}\left(\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right)^{2}
$$

B mixing and lifetime III

In the SM one obtains

$$
\begin{aligned}
M_{12, q} & =\frac{G_{F}^{2}}{12 \pi^{2}}\left(V_{t q}^{*} V_{t b}\right)^{2} M_{W}^{2} S_{0}\left(x_{t}\right) B_{B_{q}} f_{B_{q}}^{2} M_{B_{q}} \hat{\eta}_{B} \\
\Delta \Gamma_{s} & =\left(\frac{f_{B_{s}}}{240 \mathrm{MeV}}\right)^{2}\left[0.105 B+0.024 \tilde{B}_{S}^{\prime}-0.027 B_{R}\right] \\
\frac{\Delta \Gamma_{s}}{\Delta M_{s}} & =10^{-4} \cdot\left[46.2+10.6 \frac{\tilde{B}_{S}^{\prime}}{B}-11.9 \frac{B_{R}}{B}\right]
\end{aligned}
$$

(1) Lattice parameters $f_{B_{s}}, B_{S}, \ldots-\mathbf{N}$. Garron
(2) Numerical results/ updates - U. Nierste
(3) CKM elements $V_{t d}, V_{t s}, V_{t b}-\mathbf{J}$. Rohrwild, W. Wagner
(9) Test via lifetimes - U. Nierste, S. Malde

Note:

$$
\frac{\Gamma_{12}}{M_{12}}\left(B_{s}\right) \approx 5 \cdot 10^{-3} \quad \frac{\Gamma_{12}}{M_{12}}\left(D^{0}\right) \approx \mathcal{O}(1)
$$

Lattice Predictions

Non-perturbative matrix elements that appear in mixing (lifetimes)

$$
\begin{aligned}
\left\langle\overline{B_{q}}\right|(\bar{b} q)_{v-A}(\bar{b} q)_{v-A}\left|B_{q}\right\rangle & =\frac{8}{3} B_{B_{q}} f_{B_{q}}^{2} M_{B_{q}} \\
\xi & =\frac{f_{B_{s}}^{2} B_{B_{s}}}{f_{B_{d}}^{2} B_{B_{d}}}
\end{aligned}
$$

Advanced stage of lattice calculations

- statistical error \equiv computer power: "easy" to estimate
- systematic error
- "under control": finite lattice spacing, finite volume,...
- " very hard to control": e.g. is there a systematic error due to the use of staggered fermions?,....

Unquenched lattice results (a selection)

| Group | $f_{\mathrm{B}_{\mathrm{d}}}$
 (MeV) | $f_{\mathrm{B}_{\mathrm{s}}}$
 (MeV) | ξ | n_{f} | Heavy |
| :--- | :---: | :---: | :---: | :---: | :---: |\quad Light

FNAL/MILC @ lat 08-09	$195(11)$	$243(11)$	$1.205(52)$	$2+1$	Fermilab	Asqtad
HPQCD PRD 09	$190(13)$	$231(15)$	$1.258(33)$	$2+1$	NRQCD	Asqtad
RBC-UKQCD PRD 10			$1.13(12)$	$2+1$	Static	Domain Wall
ETMC @lat 09	$191(14)$	$243(13)$		2	Stat. + Int.	Twisted Mass
ETMC JHEP 10	$194(16)$	$235(12)$		2	Stat + Int. new method	Twisted Mass

SM expectations for mixing observables and $V_{t x}$

$$
\begin{aligned}
\frac{\Delta \Gamma_{s}}{\Gamma_{s}} & =0.147 \pm 0.060 \rightarrow 0.13 \pm 0.04 \\
a_{t s}^{s} & =(2.06 \pm 0.57) \cdot 10^{-5} \\
\phi_{s} & =0.24^{\circ} \pm 0.08^{\circ} \\
\frac{\Delta \Gamma_{d}}{\Gamma_{d}} & =4.1_{-1.0}^{+0.9} \cdot 10^{-3} \\
a_{t s}^{d} & =-(4.8 \pm 1.1) \cdot 10^{-4} \\
\phi_{d} & =-5.2^{\circ+1.5^{\circ}} \\
A_{s l}^{b} & =0.494 a_{s l}^{s}+0.506 a_{s l}^{d}=\left(-2.3_{-0.6}^{+0.5}\right) \cdot 10^{-4} \\
V_{t d} & =0.00865_{-0.00039}^{+0.00024} \\
V_{t s} & =0.04072_{-0.00146}^{+0.00038} \\
V_{t b} & =0.999133_{-0.000016}^{+0.000060}
\end{aligned}
$$

Test via lifetimes I

Strategy

- HQE describes mixing Γ_{12} and lifetimes
- Γ_{12} / M_{12} sensitive to new physics
- lifetimes insensitive to new physics
- Test HQE via lifetimes

Theory predictions

$$
\begin{aligned}
& \frac{\tau\left(B_{s}\right)}{\tau\left(B_{d}\right)}-1 \in\left[-5 \cdot 10^{-3} ;+1 \cdot 10^{-3}\right] \\
& \frac{\tau\left(B^{+}\right)}{\tau\left(B_{d}\right)}-1=1.063 \pm 0.027 \\
& \frac{\tau\left(\Lambda_{b}\right)}{\tau\left(B_{d}\right)}-1=0.86 \pm 0.05
\end{aligned}
$$

!BEWARE: Theory for Λ_{b} not complete: NLO-QCD+ lattice are missing!
Nierste; Lenz 2008; Gabbiani et al.

Experimental result for lifetimes

Theoretical predictions 0.83-0.95
$\tau_{\mathrm{B}^{+}}=1.638 \pm 0.011 \mathrm{ps}(\mathrm{PDG} 2010), \tau_{\mathrm{B}^{0}}=1.525 \pm 0.009 \mathrm{ps}$ (PDG 2010),
$\tau_{\mathrm{B}_{\mathrm{s}}^{0}}=1.53 \pm 0.025$ (stat) ± 0.012 (syst) ps (CDF $5.2 \mathrm{fb}^{-1}$),
$\tau_{\mathrm{B}_{\mathrm{s}}^{0}}=1.45 \pm 0.04$ (stat) ± 0.01 (syst) ps (DØ $6.1 \mathrm{fb}^{-1}$),
$\Delta \Gamma_{\mathrm{s}}=0.075 \pm 0.035$ (stat) ± 0.01 (syst) ps^{-1} (CDF FPCP 2010)
$\Delta \Gamma_{\mathrm{s}}=0.15 \pm 0.06$ (stat) ± 0.01 (syst) ps^{-1} (DØ ICHEP 2010)

New physics effects

General parametrization of new physics effects in mixing

$$
\Gamma_{12, s}=\Gamma_{12, s}^{S M}, \quad M_{12, s}=M_{12, s}^{S M} \cdot \Delta_{s} ; \quad \Delta_{s}=\left|\Delta_{s}\right| e^{i \phi_{s}^{\Delta}}
$$

leads to the following relations for observables

$$
\begin{aligned}
\Delta M_{s} & =2\left|M_{12, s}^{S M}\right| \cdot\left|\Delta_{s}\right| \\
\Delta \Gamma_{s} & =2\left|\Gamma_{12, s}\right| \cdot \cos \left(\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta}\right) \\
a_{f s}^{S} & =\frac{\left|\Gamma_{12, s}\right|}{\left|M_{12, s}^{\mathrm{SM}}\right|} \cdot \frac{\sin \left(\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta}\right)}{\left|\Delta_{s}\right|} \\
\phi_{s}^{J / \Psi \phi} & =-2 \beta_{s}+\phi_{s}^{\Delta}+\delta_{\text {Peng. }}^{\mathrm{SM}}+\delta_{\text {Peng. }}^{\mathrm{NP}}
\end{aligned}
$$

Discussion of penguin contribution by Marco Ciuchini Remember: $\phi_{s}^{\mathrm{SM}}=\arg \left(-M_{12}^{S} / \Gamma_{12}^{S}\right)$ and $\beta_{s}=\arg \left(-V_{\mathrm{ts}} V_{\mathrm{tb}}^{*} / V_{\mathrm{cs}} V_{\mathrm{cb}}^{*}\right)$

Status of mixing-induced CPV in $\mathrm{B}^{0}(1)$

$\sin 2 \phi_{1}=0.650 \pm 0.029 \pm 0.018$
[PRL 98,031802(07)+PRD77 091103(08)]

$0.687 \pm 0.028 \pm 0.012$ [PRD 79,072009(2009)]

Status of mixing-induced CPV in $\mathrm{B}^{0}(2)$

Coming soon : Final Belle sample

$b \rightarrow c \bar{C} s \quad$ from $772 \times 10^{6} B B$ pairs $=$ final Belle data sample

	$J / \phi K_{S}{ }^{0}$	$J / \phi K_{L}{ }^{0}$	$\phi(2 S) K_{S}{ }^{0}$	$\chi_{c 1} K_{S}{ }^{0}$	$N_{B B}\left(\times 10^{6}\right)$
Signal yield ('10)	$\mathbf{1 2 7 2 7} \pm 115$	$\mathbf{1 0 0 8 7} \pm 154$	1981 ± 46	$\mathbf{9 4 3} \pm 33$	$\mathbf{7} 72$
Purity ('10) [\%]	$\mathbf{9 7}$	$\mathbf{6 3}$	$\mathbf{9 3}$	$\mathbf{8 9}$	
Signal yield ('06)	7484 ± 87	6512 ± 123	-	-	535
Purity ('06) [\%]	97	59	-	-	

New tracking software helps to increase signal yield.

CDF FPCP $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ results

CDF Public Note 10206 (18 July 2010), no new results since ICHEP

- $5.2 \mathrm{fb}^{-1}, \beta_{\mathrm{s}} \in[0.02,0.52] \cup[1.08,1.55]$ rad at $68 \% \mathrm{CL}$ $\Rightarrow \phi_{\mathrm{s}}^{\mathrm{J} / \psi \phi}=-0.54 \pm 0.50 \mathrm{rad}$ (our estimate)
- S-wave taken into account in the fit
- Selection: optimized directly stat uncertainty on β_{s} (before was $\sqrt{S /(S+B)}$)
- $6500 \mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ candidates
- SSK calibration checked on data with $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \pi^{+}$

DØ ICHEP $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ results

- $6.1 \mathrm{fb}^{-1}: \phi_{\mathrm{s}}^{\mathrm{J} / \psi \phi}=-0.76_{-0.36}^{+0.38}$ (stat) ± 0.02 (syst) rad .
- About 3400 signal events (~ 2 times less than CDF with similar lumi)
- Checks F-B asymmetry of $\cos (\psi)$ distribution versus $\mathrm{K}^{+} \mathrm{K}^{-}$mass that there is no significant s-wave contribution, but do not account for possible contribution in the fit
- Constraints strong phases to the values from $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{* 0}$

Tevatron ICHEP B ${ }_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ results

LHCb B $\rightarrow \mathrm{J} / \psi \mathrm{X}$ peaks

$\mathcal{L}^{\text {int }} \sim 600 \mathrm{nb}^{-1}, \quad \mathrm{~J} / \psi \rightarrow \mu^{+} \mu^{-}$

Mass resolution currently $\sim 1.35 \times$ MC.

LHCb B $\rightarrow \mathrm{J} / \psi \mathrm{X}$ peaks

$\mathcal{L}^{\text {int }} \sim 600 \mathrm{nb}^{-1}$

Proper time resolution currently $\sim 2 \times \mathrm{MC}(\sim 0.08 \mathrm{ps})$. However, good enough to resolve Δm_{s} (with more stat) and will improve with better alignment

$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ sensitivity projection (LHCb)

BEWARE:

$\Delta \Gamma_{\mathrm{s}}=0.075 \pm 0.035$ (stat) ± 0.01 (syst) ps ${ }^{-1}$ (CDF FPCP 2010) $\Delta \Gamma_{\mathrm{s}}=0.15 \pm 0.06$ (stat) ± 0.01 (syst) ps ${ }^{-1}$ (DØ ICHEP 2010) and $\phi_{\mathrm{s}}{ }^{J / \psi \phi}$ uncertainty decreases when $\Delta \Gamma_{s}$ grows!

$$
\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}\right) \mathcal{B}\left(\mathrm{f}_{0} \rightarrow \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi\right) \mathcal{B}\left(\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}\right)} \simeq 0.2-0.3[\text { Stone et al, PRD79, } 07024 \text { (2009)] }
$$

Since $\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi\left(\mathrm{K}^{+} \mathrm{K}^{-}\right)\right)=(6.4 \pm 2.0) \times 10^{-4}$
$\Rightarrow \quad \mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}\left(\pi^{+} \pi^{-}\right)\right)=(1.3-2.7) \times 10^{-4}$
Belle result:
2 D fit to ΔE and $m\left(\pi^{+} n^{-}\right)$

Belle also observes $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \eta$ and $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \eta^{\prime}$

Semileptonic asymmetry

Dø measures $A_{s l}^{b}=(-0.957 \pm 0.251($ stat $) \pm 0.146($ syst $)) \%$ SM prediction is $\left(-0.023_{-0.006}^{+0.005}\right) \%$
Measurement is $\sim 3.2 \sigma$ away from SM

Hypothesis	p-value
$\Delta_{d}=1$	2.5σ
$\Delta_{s}=1$	2.7σ
$\Delta_{d}=\Delta_{s}=1$	3.4σ

without 2010 CDF/D \varnothing results on $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$

$\mathrm{D} \varnothing$ ICHEP $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ results including asl and DsDs

LHCb projection of $a_{\text {fs }}$

LHCb propose to measure $a_{\mathrm{sl}}^{\mathrm{s}}-a_{\mathrm{sl}}^{\mathrm{d}}$ by determining the difference in the asymmetry measured in $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-}(\mathrm{KK} \pi) \mathrm{m} \mu^{+} \nu \& \mathrm{~B}^{0} \rightarrow \mathrm{D}^{-}(\mathrm{KK} \pi) \mathrm{m} \mu^{+} \nu$. Same final state suppresses detector biases. Provide orthogonal constraint to $\mathrm{D} \varnothing$ dileptons.

Events already being accumulated

$V_{\mathrm{td}}, V_{\text {ts }}$ and V_{tb}

Top-Quark Decay

$$
R_{b}=\frac{\mathcal{B}(\mathrm{t}) \mathrm{Wb}}{\mathcal{B}(\mathrm{t}) \mathrm{Wq}}=\frac{\left|V_{\mathrm{tb}}\right|^{2}}{\left|V_{\mathrm{tb}}\right|^{2}+\left|V_{\mathrm{ts}}\right|^{2}+\left|V_{\mathrm{td}}\right|^{2}}
$$

DØ result Phys. Rev. Lett. 100 (2008) $192003\left(\mathcal{L}^{\text {int }}=0.9 \mathrm{fb}^{-1}\right)$: $R_{b}=0.97_{-0.08}^{+0.09}$ (stat.+sys.) $R_{b}>0.79$ at $95 \% \mathrm{CL}$
$\Rightarrow\left|V_{\mathrm{ts}}\right|^{2}+\left|V_{\mathrm{td}}\right|^{2}<0.263 \cdot\left|V_{\mathrm{tb}}\right|^{2}$

Direct V_{tb} Tevatron result

$$
\left|\mathrm{V}_{\mathrm{tb}}\right|=0.88 \pm 0.07 \text { (stat+syst) } \pm 0.07 \text { (theory) }
$$

CDF and D \varnothing Collaborations:
arXiv: 0908.2171 [hep-ex]

Tevatron starts to be limited by systematics

Charm Theory I

Usual definitions:

$$
x=\frac{\Delta M}{\Gamma}, y=\frac{\Delta \Gamma}{2 \Gamma}
$$

In principle the same formalism as in the B -system BUT Keep in mind: now $\Gamma_{12} / M_{12} \approx \mathcal{O}(1)$

Still no satisfactory theoretical approach available

- Exclusive approach: Falk, Grossmann, Ligeti, Nir, Petrov
- Inclusive apporach: Georgi; Ohl, Ricciardi, Simmons; Bigi, Uraltsev

Very important question:
How large can CP-violation in D-mixing in the SM be?

- sometimes in the literature: 10^{-3} is an unambigous sign of new physics
- Petrov: at most $\approx 10^{-3}$ in SM; 10^{-2} is a "smoking gun" signature of NP
- Bobrowski, Lenz, Riedl, Rohrwild: not excluded: up to $5 \cdot 10^{-3}$ in SM

Charm Theory II

Despite the big problems to determine the SM expectations to D-mixing: D-mixing gives very strong bounds on new Physics models

Petrov; Golowich, Hewett, Pakvasa, Petrov 2007

Sensitive up to scales of $10^{2} \ldots 10^{3} \mathrm{TeV}$

Also very interesting effects in decays of charmed baryons - see Alexejs Petrov's talk

Charm experimental status

Combined result of Belle, BaBar and CDF

- D-mixing established at 10σ level while no single experiment has yet a 5σ observation
- the most significant contribution are the least constraining in term of excluding "no-mixing"
- Babar and CDF find $x^{\prime 2}<0$

Charm at LHCb

First presentation of charm cross-section results In broad agreement with theory

Charm at LHCb

Many D decay already reconstructed Acquired LHCb data sets approach existing data sets of other experiments

Mixing and CPV analyses in preparation
Expect to acquire enough data to significantly increase sensitivities in the course of next year

Charm prospects

Real improvement would come from running at the $\psi(3770)$

Conclusions

- Good progress since last CKM workshop
- New experimental results from this year in the B_{s} sector
- Final $\sin 2 \beta$ from Belle expected in near future
- Lattice QCD keeps up improving precision
- Several numerical updates on theory side
- Charm mixing still waits for single 5σ measurement
- CP Violation in charm starts to touch region where it will be hard to claim new physics

Prospects

- Tevatron is still accumuating data
- Belle has $120 \mathrm{fb}^{-1}$ at $\Upsilon(5 S)$ to analysis compared to $23.5 \mathrm{fb}^{-1}$ analysed now
- LHCb collects data quickly
- Super B factory is going to happen and can provide new improvements
- We had few interesting discussions (specially about penguin contributions to CPV), hopefully we can make progress in next two years

Backups

