Summary from WGIII -Rare Decays

Mitesh Patel (Imperial College London)

The Interest in Rare Decays

[Straub]

Rare Decays as Probes of NP models

Rare Decays as Probes of NP models

• While only a schematic picture :

- Correlation between different measurements a powerful probe of NP models
- Large number of potential channels ... will talk only about a few
- RD have a bright future: final data sets from B-factofies, LHCb, Super Flavour Factories, Kaon experiments...

B -> K* II - Experimental Status

- Four-body final state with rich phenomenology
- Many observables: A_{FB}, F_L, Isospin Asymmetry...

B -> K* II - Experimental Status

- Four-body final state with rich phenomenology
- Many observables: A_{FB}, F_L, Isospin Asymmetry...

$B \rightarrow K^{(*)} \ell^+ \ell^-$ Isospin Asymmetry

- A_{I} is consistent with zero for all q^{2} and in the high- q^{2} region
- In the low-q² region A_I shows a significant deviation from zero
- BABAR measures a significant A_I in the low q² region
 - → $K\ell^+\ell^-$ and $K^*\ell^+\ell^-$ modes modes differ from the SM prediction by 3.9σ
- Belle and BABAR results are consistent
 - Belle is also consistent with SM prediction

B -> K* II - Long Distance Effects

Charm-loops in $B \to K^{(*)}\ell^+\ell^-$

• Charm-loop effect: a combination of the $(\bar{s}c)(\bar{c}b)$ weak interaction $(O_{1,2})$ and e.m.interaction $(\bar{c}c)(\bar{\ell}\ell)$

• correction to the effective coefficient of O_9 operator, $B \rightarrow K \ell^+ \ell^-$:

B -> K* II - Status of Form Factors

to reach < 20% accuracy of the form factors we need QCD calculation !

[Khodjamirian]

Combined analysis of $B \to K$ and $B \to K^*$ form factors

[A.Bharucha, Th.Feldmann, M.Wick, 1004.3249[hep-ph].

- use LCSR (Ball-Zwicky (2005)) and some lattice results ⊕ series parameterization
- typical uncertainties: $\pm (12 15)\%$ for $B \rightarrow P$, $\sim \pm 20\%$ for $B \rightarrow V$ form factors

• an example: $B \to K$ form factor $f^+_{BK}(q^2) \equiv A_{V,0}(q^2)$

B -> K* II - Future prospects for Form Factors

[Khodjamirian]

B → P form factors needed for B → Pℓ⁺ℓ⁻ are accessible both on the lattice and with LCSR, future accuracy:
 ~ 5% (lattice, [App.A SuperB report '07]
 ~ 10% (LCSR)

- $B \rightarrow V$ form factors: difficulties of "unquenching" on the lattice
- LCSR techniques combined with series parameterization may play a decisive role in providing *B* → *V* form factors in future, very optimistically, with 10-15% accuracy
- Lattice calculations of form factors at high q²

[Liu]

• Difficulty extrapolating from q^2_{max} to lower q^2

B -> K* II - New Observables : A_T^2

• Find observables where have reduced dependence on form factors

$$A_T^2 = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2} = -2\frac{\operatorname{Re}H_+^*H_-}{|H_+|^2 + |H_-|^2}$$

• Physics Sensitivity: Deviation from SM left-handed structure: $A_T^2 \Big|_{SM} \sim 0$.

[Matias]

- Cleanliness: Soft form factor (ξ_⊥(0)) dependence cancel exactly at LO and very mild dependence at NLO.
- Domain: Low-Region $1 \le q^2 \le 6 \text{ GeV}^2$ (High region, see G. Hiller et al.)

B -> K* II - New Observables : A_T^5

• Find observables where have reduced dependence on form factors

$$A_{T}^{(5)} = \frac{|A_{\parallel}^{R*}A_{\perp}^{L} + A_{\parallel}^{L}A_{\perp}^{R*}|}{|A_{\parallel}|^{2} + |A_{\perp}|^{2}}$$

[Matias]

B -> K* II - LHCb Prospects

B -> K* II - LHCb Prospects

[Soomro]

• B -> K* J/Psi control channel

 \Rightarrow Efficiency estimates from MC are reliable

B -> K* II - The Future

[Nishida, Ciuchini]

- I year of LHCb data-taking s₀~ 13% uncertainty
- 5 years at Super Flavour Factory $s_0 \sim 5\%$ uncertainty

B -> K^(*)nunu

- Electroweak penguin (loop diagram) radiated processes (b→s):
 - Flavor changing neutral current (FCNC) prohibited in SM at tree level
 - > Sensitive New Physics (NP): Susy particles, light dark matter (LDM), ...

• Branching ratio of a large number of such channels has been constrained by B factories

Alejandro Pérez, CKM 2010 - University of Warwick - September 8th 2010

	Target Channel	Best B-factories Exp. Limits
MS←Q	$B \rightarrow K^+ \nu \nu$	< 1.3 x 10 ⁻⁵
	$B \rightarrow K^{0} \nu \nu$	< 5.6 x 10 ⁻⁵
	$B \rightarrow K^{*o} \nu \nu$	< 12 x 10 ⁻⁵
	$B \rightarrow K^{*+} \nu \nu$	< 8 x 10 ⁻⁵
b→dw	$B \rightarrow \pi^+ \nu \nu$	< 1.0 x 10 ⁻⁴
	$B \rightarrow \rho^+ \nu \nu$	< 1.5 x 10 ⁻⁴
	$B \rightarrow \rho^{0} \nu \nu$	< 4.4 x 10 ⁻⁴
	$B \rightarrow \pi^0 \nu \nu$	< 2.2 X 10 ⁻⁴
others	$B \rightarrow \varphi \nu \nu$	< 5.8 x 10 ⁻⁵
	<i>B</i> →invisible	< 2.2 X 10 ⁻⁴
	$B \rightarrow \gamma \nu \nu$	< 4.7 x 10 ⁻⁵

15

[Chen]

[Perez, Kamenik]

B -> K^(*)nunu - Observables and Future Prospects

• Parametrize SM+NP in OPE:
$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* (C_L^{\nu}\mathcal{O}_L^{\nu} + C_R^{\nu}\mathcal{O}_R^{\nu}) + h.c.$$

• Only two independent combinations measurable with present observables

• important feature of F_L : only depends on η

Any deviation from SM would imply presence of right-handed currents

Altmannshofer et al., 0902.0160

B -> K^(*)nunu - Observables and Future Prospects

SuperB, 50 ab⁻¹

Warning: very preliminary results

- Still need to quantify the effect of:
 - Bwd-EMC on background rejection
 - SuperB machine backgrounds rates

BNB S/ & Ethiss/d Emiss

[Kamenik, Smith, Chen]

• Neutrinos not detected in experiments probing b \rightarrow s/d vv

$P in b \rightarrow s/d_{I} \xrightarrow{Envisible spin} 1/2 \xrightarrow{1/2} \xrightarrow{FERMIONS}$

Freitag, 10. September 2010

- B -> X_s gamma Theory
 - SM prediction at NNLO
 - Current (2006) value Misiak et. al. '06:

 $\Gamma(b \to s\gamma) = (3.15 \pm 0.23) \times 10^{-4}, \quad E_{\gamma} > 1.6 \text{ GeV}$

- Four types of uncertainties:
- nonperturbative (5%) from $\mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$
- $\frac{\Lambda_{\rm QCD}}{m_b}$)
- Can we improve on the Non-perturbative error?

- parametric (3%)
- higher-order (3%)
- m_c -interpolation ambiguity (3%)
- New perturbative corrections ~ 1% for $\Gamma(\bar{B} \to X_s \gamma)$

SCET analysis [Benzke, Lee, Neubert, Paz]

new: Q₇ - Q₈ at tree-level ! => irreducible 5% uncertainty

[Paz]

B -> X_s gamma - Experiment

[Wang]

✓ No significant asymmetry is observed, most precise to date. ✓ Consistent with SM and previous measurements.

✓ All measurements dominated by statistical uncertainty.

ent					
nma	BR				
trap.)	8.85±0.24±0.09				
iction.					
SM prediction: $E_{\gamma} > 1.6 \text{ GeV}$ M. Misiak et al., $B(\bar{B} \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ World average: M $B(\bar{B} \rightarrow X_s \gamma) = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4}$					
+ + Λ	Already gives the best lower limit on the charged Higgs mass: Mut > 295 GeV@95%Cl				
• (im	Given power of this, still important to prove expt'al error?				

K -> pinunu - Theory

[Stamou, Straub]

- Sensitive to new physics
- Precise theory prediction

K⁺ -> pi⁺nunu - Experiment

Final results from E787/E949 (2008) [Spadaro]

Combined results, from E787 (1995-8 runs) & E949 (12-weeks run in 2001)

K⁺ -> pi⁺nunu - Experiment

The in-flight approach: NA62 @ CERN

Freitag, 10. September 2010

Theorists Point of View on LFV, RPV and Invisible States vv

Lepton flavor violation: $P \rightarrow P' v^I \overline{v}^J$

Within MFV, $P \to P' v^I \overline{v}^J$ and $P \to P' \ell^I \overline{\ell}^J$ are both tightly constrained by $\ell^I \to \ell^J \gamma$, making them too suppressed to be seen.

R-parity violation: Tree-level effects possible from $\Delta \mathcal{L} = 1$ couplings.

Within MFV, $\Delta \mathcal{L}$ couplings are negligible, and loop-level FCNC from $\Delta \mathcal{B}$ couplings are very suppressed (except maybe for $b \rightarrow s$).

New invisible states: $P \rightarrow P' + \text{missing energy}$

Competitive bounds if these states have flavor-breaking interactions, or if they couple to top quarks (?), but not if they couple to light quarks.

LFV and LNV Decays at B factories

> No evidence for a signal → derive 90% CL upper limits on BF

Decay mode	Eff.	$N_{ m bkg}$	UL on BF
$B^+ \to D^- e^+ e^+$	1.2%	0.18 ± 0.13	$2.7 imes 10^{-6}$
$B^+ \to D^- e^+ \mu^+$	1.3%	0.83 ± 0.29	$1.9 imes10^{-6}$
$B^+ \to D^- \mu^+ \mu^+$	1.8%	1.44 ± 0.43	$1.1 imes 10^{-6}$

Large number of tau LFV decay modes also limited...

9-2010

B_s->mumu - Status and Future at Tevatron

- $B \rightarrow \mu \mu$ (D0 new result 6.1 fb⁻¹) B(Bs) < 51 x 10⁻⁹
 - ➡ CDF World Best 3.7fb⁻¹ B(Bs) < 43 × 10⁻⁹
 - No evidence of Physics beyond the SM
- Additional data being collected, 8fb⁻¹ on tape
 - ➡ Expect 10fb⁻¹ by Summer 2011, and possibly 16fb⁻¹ in 2014.

Bertram

B_s->mumu - LHCb Prospects - road to a measurement

B_s->mumu - LHC Prospects

[Serra]

	Experiment	Nsg	Nbg	Upper Limit 90%CL
er: S b ⁻¹ (11	ATLAS (10 fb ⁻¹ 14TeV)	5.6 events	14^{+13}_{-10} events (only bb $\rightarrow \mu\mu$)	
	CMS (1fb ⁻¹ 7TeV)	1.4	4.0 (1.25 only $bb \rightarrow \mu \mu$)	15.8 ·10 ⁻⁹ private calculation
	LHCb (1fb ⁻¹ 7TeV)	6.3 (in the most significant region)	32.4 (in the most significant region)	7 ·10 ⁻⁹

- All the experiments plan to normalize to either $B_d \rightarrow J/\psi K^*$ or $B^+ \rightarrow J/\psi K^+$, LHCb is also studying the possibility to normalize to $B_s \rightarrow J/\psi \phi$
- B_d BR are well known the need the measurement of fd/fs, LHCb plans to measure this parameter with the ratio $B \rightarrow D^-K^+$ and $B_s \rightarrow D_s^-\pi^+$
- Expected limit on $BR(B_s^0 \rightarrow \mu^+\mu^-) < 7 \cdot 10^{-9}$ with LHCb with 1fb⁻¹ (corresponding to what we will get by the end of next year)
- Possibility to discover NP for $BR(B_s^0 \rightarrow \mu^+\mu^-) > 17 \cdot 10^{-9}$ with 1fb⁻¹.

Conclusions

- Large number of interesting contributions to WGIII
- Seems that rare decays will remain an essential tool to understanding physics beyond the SM :
 - Observables with precise (and improving) theoretical predictions
 - Lots of scope for improved experimental measurements
- In the future, hope they will help us to discriminate between different new physics models

B -> K* II - Experimental Status

- Four-body final state with rich phenomenology
- Many observables: A_{FB}, F_L, Isospin Asymmetry...

