V_{us} FROM HADRONIC au DECAY

K. Maltman

CKM10, University of Warwick, September 7, 2010

OUTLINE

- The basics
- A few relevant technical issues
- Results, assessment and the future

THE BASIC IDEA

• With $I_{ij}^w(s_0)$, ij = ud, us, the $s \leq s_0$, w(s)-weighted integrals over flavor ud, us V+A τ decay distributions, $[\delta J^w(s_0)]_{OPE}$ the OPE representation for

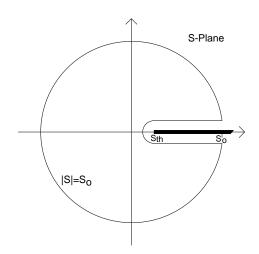
$$\delta J^w(s_0) \equiv \frac{I_{ud}^w(s_0)}{|V_{ud}|^2} - \frac{I_{us}^w(s_0)}{|V_{us}|^2}$$

$$|V_{us}| = \sqrt{I_{us}^{w}(s_0) / \left[\frac{I_{ud}^{w}(s_0)}{|V_{ud}|^2} - [\delta J^{w}(s_0)]_{OPE}\right]}$$

• Typically $[\delta J^w(s_0)]_{OPE} \sim$ few to several % of $I^w_{ud}(s_0)$ \Rightarrow modest OPE errors to get accurate $|V_{us}|$ [Gamiz et al., JHEP 0301: 060]

• V,A ij = ud, us, (J) = (0 + 1), (0) spectral functions from experimental differential decay distributions

$$dR_{V/A;ij}/ds = 12\pi^2 |V_{ij}|^2 S_{EW} \left[w_{(00)}(y_{\tau}) \rho_{V/A;ij}^{(0+1)}(s) + w_L(y_{\tau}) \rho_{V/A;ij}^{(0)}(s) \right] / m_{\tau}^2$$


with
$$R_{V/A;ij} \equiv \frac{\Gamma[\tau \to \nu_{\tau} \, \text{hadrons}_{V/A;ij} \, (\gamma)]}{\Gamma[\tau^- \to \nu_{\tau} e^- \bar{\nu}_e(\gamma)]}$$
, $y_{\tau} = s/m_{\tau}^2$
 $w_{(00)}(y) = (1-y)^2 (1+2y)$, $w_L(y) = -2y(1-y)^2$

• "longitudinal": (0) part of (0+1)/(0) decomposition

• $[\delta J^w(s_0)]_{OPE}$: OPE on RHS of FESR relation

$$\int_0^{s_0} w(s) \, \rho(s) \, ds = -\frac{1}{2\pi i} \oint_{|s|=s_0} w(s) \, \Pi(s) \, ds$$

for correlators
$$\Pi(s) = \Pi_{ud,us;V/A}^{(0+1)}(s)$$
, $s\Pi_{ud,us;V/A}^{(0)}(s)$

(Data on LHS, OPE on RHS)

- Bad convergence of integrated (J) = (0) D = 2 OPE series \Rightarrow must treat phenomenologically. Fortunately
 - $-\pi$, K contributions accurately known
 - strong continuum suppression ($\propto (m_i \mp m_j)^2$)
 - small us continuum contribution from us scalar, PS analyses (constrained by m_s)
 - impact on V_{us} small (\sim 0.0002 or less)
- \Rightarrow essentially $\Delta\Pi \equiv \Pi^{(0+1)}_{ud:V+A} \Pi^{(0+1)}_{us;V+A}$ FESRs

A PUZZLE: THE CURRENT KINEMATIC $w_{(00)}(y)$ WEIGHT CASE RESULTS

- $s_0 = m_\tau^2$, kinematic weight $w_{(00)}(s) \Rightarrow I_{ud,us}^w$ from $B_{ud;TOT}$, $B_{us;TOT}$
- \bullet recent improved us branching fractions sufficient for improved $|V_{us}|$ determination (for $s_0=m_{\tau}^2$ AND $w_{(00)}(s)$ choice only)
- Experimentally more difficult inclusive $dR_{us;V+A}/ds$ distribution required for other w(s) and/or s_0 [expected from BaBar, Belle, but still some time in future]

• The experimental situation:

- $I_{ud}^w(s_0)$: \sim 0.5% errors for range of w and s_0 [ALEPH 2005 data and covariances]
- $I_{us}^w(s_0)$: pre-2007 us errors $\sim 3-4\%$ [ALEPH99 distribution, rescaled mode-by-mode for exclusive us B changes] ($\Rightarrow \sim 1.5-2\%$ on $|V_{us}|$)
- Recent improved B values for several us exclusive modes [BaBar, Belle] (but not dR_{us}/ds)
- Current $B_{us;TOT}$ error 2.0% [Lusiani, ICHEP10] (\Rightarrow 1% on $|V_{us}|$)

- Results of conventional $w_{(00)}(s)$ analysis:
 - CIPT+Adler function/CIPT+correlator D=2 OPE evaluations used previously in literature, $K_{\mu 2}$ for K contribution, yield updated $|V_{us}|$ results

```
0.2166(22)_{exp}(5??)_{th} (CIPT + Adler function)

0.2162(22)_{exp}(5??)_{th} (CIPT + correlator)
```

- $|V_{us}|$ nominally 3.6 σ low c.f. 3-family unitarity expectations, $K_{\ell 3}$ and $\Gamma[K_{mu2}]/\Gamma[\pi_{\mu 2}]$
- (More on ?? in nominal theory error later)

WHAT'S GOING ON?

- Problem(s) with the ud V+A data?
- Problem(s) with the $us \lor +A$ data? (Especially possible missing higher multiplicity modes at higher s)
- Underestimate of theory uncertainties/unreliable central OPE values?
- None of the above, i.e., new physics?

INVESTIGATING THE POSSIBILITIES

- Definite problem(s) if $|V_{us}|$ not independent of both s_0 and w(s)
- Use of polynomial $w(y)=\sum_m b_m y^m$, $y=s/s_0$ to test/check higher D OPE contributions $(D=2k\propto 1/s_0^{k-1},$ "absent" if $b_{k-1}=0)$
- Alternate D=2 OPE prescriptions differing only at higher order in α_s than truncation order (CIPT+correlator, CIPT+Adler function, FOPT) should give results compatible within D=2 truncation error estimate

- "Supplementary" us V+A FESRs
 - Remove ud V+A data as potential problem source
 - $|V_{us}|$ from FESRs for flavor us V+A correlator combination:

$$|V_{us}| = \sqrt{\frac{I_{us;V+A}^w(s_0)}{I_{OPE}^w(s_0)}}$$

— us spectral data needed identical to that for ud-us FESRs

- OPE side of us V+A FESRs
 - * $O(m_s^2 \alpha_s^m)$ D= 2 coefficients almost identical to those of ud-us V+A series
 - * CAUTION: presence of D=0, $\langle \alpha_s G^2 \rangle$ D=4 OPE contributions \Rightarrow some increase in OPE error
- IF OPE OK, problem due to missing higher s us spectral strength $\Rightarrow |V_{us}|$ must be larger at lower s_0
- $|V_{us}|$ lower at lower $s_0 \Rightarrow$ definite OPE problem (additional us data problem not precluded)

Problems with the ud data?

- τ vs CVC+IB electroproduction expectation discrepancy for $\pi\pi$ [minor for BaBar EM, non-trivial for KLOE, Novosibirsk]
- Similar τ vs EM discrepancy for 4π [still non-trivial, even for preliminary BaBar LP07 4π EM]
- HOWEVER, correlations in PDG global τ branching fractions fit dominantly to "nearby multiplicity" non-strange modes \Rightarrow impact on $|V_{us}|$ likely small

Problems with the us data?

- ullet B for some moderately large exclusive modes not yet remeasured by B factories [Table]
- Missing modes above $s\sim 2~GeV^2~(\delta V_{us}\sim 0.0004~{\rm for}$ each $\delta B\sim 10^{-4})$, e.g., for $w_{(00)}(s)$, $s_0=m_{\tau}^2$,

$$-B[K^{-}\pi^{0}\pi^{0}\nu_{\tau}] \text{ up } 3\sigma \Rightarrow \delta|V_{us}| = +0.0025$$

$$-B[(K3\pi)^{-}\nu_{\tau}] \text{ up } 3\sigma \Rightarrow \delta |V_{us}| = +0.0030$$

- ALEPH99 K 4π rough estimate $\Rightarrow \delta |V_{us}| = +0.0013$
- (See later, however, re s_0 stability issues etc.)

PRE-2007 vs Lusiani ICHEP10 $us~\mathcal{B}$ VALUES

Mode	$\mathcal{B}_{2006}(\%)$	$\mathcal{B}_{ICHEP10}\left(\% ight)$
K^- [τ decay]	0.685(23)	0.696(10)
(Alt: $[K_{\mu 2}]$)	(0.715(3))	(0.715(3))
$K^{-}\pi^{0}$	0.454(30)	0.431(15)
$\bar{K}^0\pi^-$	0.878(38)	0.827(18)
$K^{-}\pi^{0}\pi^{0}$	0.058(24)	0.060(22)[**]
$\bar{K}^{0}\pi^{0}\pi^{-}$	0.360(40)	0.349(15)
$K^{-}\pi^{-}\pi^{+}$	0.330(50)	0.294(7)
$K^-\eta$	0.027(6)	0.016(2)
$(\bar{K}\eta\pi)^-$	0.029(9)	0.0141(19)
$(\bar{K}3\pi)^-$	0.141(37)	0.165(39)[**]
$K\phi$		0.0037(1)
$(\bar{K}4\pi)^-$ (est'd)	0.011(7)	[**]
$(\bar{K}5\pi)^-$ (est'd)	0.006	[**]
TOTAL	2.973(86)	2.857(58)
	(3.003(83))	(2.876(58))

OPE Problems?

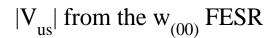
- Key OPE problem: slow $D=2\ (0+1)$ series convergence at the correlator level
- $\Delta\Pi(Q^2) \equiv \Pi^{(0+1)}_{ud;V+A} \Pi^{(0+1)}_{us;V+A}$, $\Delta\rho(s)$: correlator and corresponding spectral function for ud-us V+A FESRs
- D=2 OPE series, $\bar{m}_s=m_s(Q^2), \ \bar{a}=\alpha_s(Q^2)/\pi, \ \overline{MS}$ scheme [Baikov, Chetyrkin, Kuhn PRL95:012003]

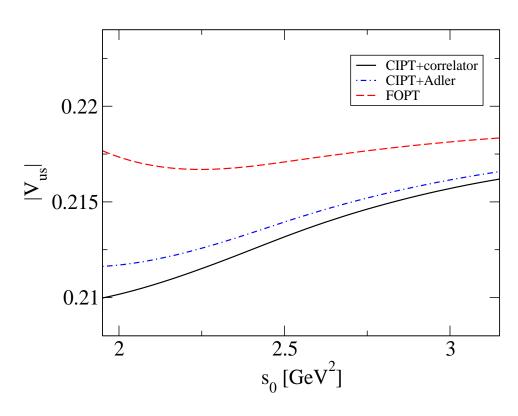
$$\left[\Delta\Pi(Q^2)\right]_{D=2} = \frac{3}{2\pi^2} \frac{\bar{m}_s}{Q^2} \left[1 + 2.333\bar{a} + 19.933\bar{a}^2 + 208.746\bar{a}^3 + (2378 \pm 200)\bar{a}^4 + \cdots\right]$$

- $a(m_{\tau}^2) \sim 0.1 \Rightarrow \textit{very}$ slow convergence at spacelike point on $|s| = s_0$, even for maximum $s_0 = m_{\tau}^2$
- (Not surprisingly) integrated D=2 (0+1) series convergence typically also slow, e.g., for $s_0=m_{\tau}^2$, $w_{(00)}(s)$ with CIPT+Adler function (1st line), CIPT+correlator (2nd line), FOPT (3rd line) D=2 prescriptions, , to $O(\bar{a}^4)$:

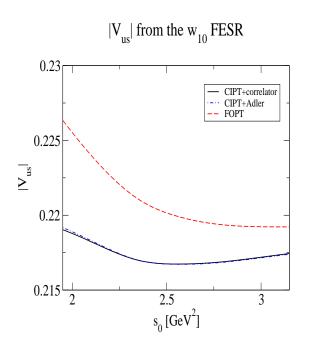
$$\sim [1 + 0.286 + 0.103 - 0.039 - (0.197) + \cdots]$$

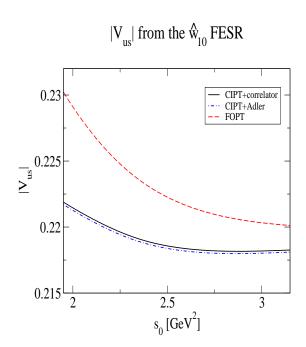
$$\sim [1 + 0.151 + 0.017 - 0.120 - (0.293) + \cdots]$$


$$\sim [1 + 0.405 + 0.257 + 0.154 + (0.081) + \cdots]$$

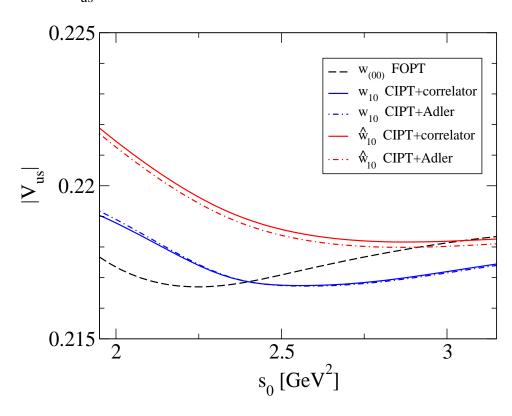

- Options for dealing with the slow D = 2 convergence:
 - take advantage of improved convergence in CIPT away from spacelike point via choice of weight [Here: w_{20} , \hat{w}_{10} , w_{10} of PRD62 (2000) 093020]
 - FESRs for alternate flavor-breaking correlator combinations with suppressed D=2 OPE at correlator level [involves combination of EM, τ decay data]
 - $-s_0$ -stability checks as crucial test

SOME ILLUSTRATIVE RESULTS

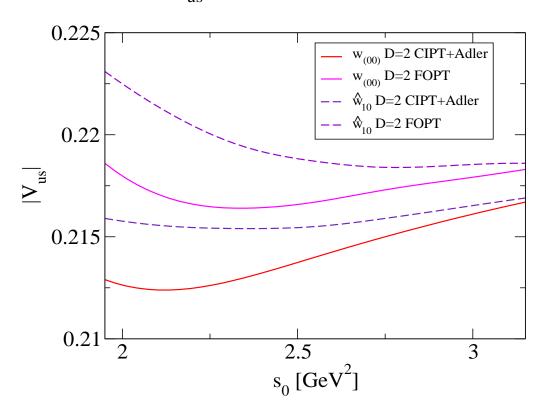

- ud V+A spectral integrals, errors from ALEPH 2005 data, covariances
- us V+A spectral integrals results using $K_{\mu 2}$ input, modeby-mode rescaled ALEPH 1999 us distribution to handle $w \neq w_{(00)}, \ s_0 \neq m_{\tau}^2$ cases
- Rescaling necessary as updated distributions currently available only for $K^-\pi^+\pi^-$, $K^-K^+K^-$ [BaBar]
- However, test of rescaling for weighted $K^-\pi^+\pi^-$ integrals (BaBar vs rescaled ALEPH99) shows rescaling very reliable for central values, despite large rescaling


$s_0\text{-STABILITY},\ w_{(00)}\ \text{FESR}$

s_0 -STABILITY, w_{10} , \hat{w}_{10} FESRs

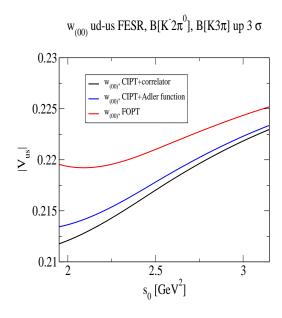


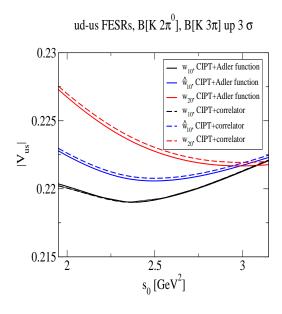
CAUTION: VERY slow FOPT convergence


OK STABILITY, D=2 CONVERGENCE CASES

 $|V_{us}|$ from reasonable stability/convergence ud-us FESRs

THE us V+A FESRs


|V_{us}| from the us V+A FESRs



Impact of 3σ B increases for largest us modes not yet remeasured by BaBar or Belle: $|V_{us}|$ vs s_0

 $w_{(00)}$ FESR

 w_{10} , \hat{w}_{10} , w_{20} FESRs

ALTERNATE EM-T FESRS

- Slow convergence of the integrated D=2 OPE series for $\Delta\Pi$ due to slow convergence at the correlator level (for scales kinematically accessible in τ decay)
- Suggests trying alternate flavor-breaking combinations with suppressed D=2 OPE contributions, e.g.,

$$\Delta \Pi^{EM,\tau} \equiv 9\Pi_{EM} - \left[5\Pi_{ud;V} - \Pi_{ud;A} + \Pi_{us;V+A} \right]$$

(same normalization for $us \lor +A$ as in $\Delta \Pi$)

• D=2 suppression choice also suppresses D=4

-D = 4

$$-D = 2$$

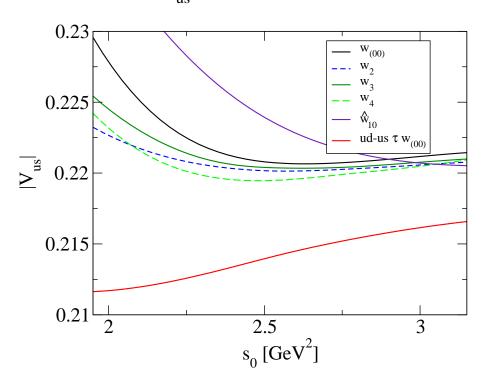
$$\left[\Delta\Pi(Q^2)\right]_{D=2} = \frac{3}{2\pi^2} \frac{\bar{m}_s}{Q^2} \left[1 + \frac{7}{3}\bar{a} + 19.933\bar{a}^2 + 208.75\bar{a}^3 + \cdots\right]$$

$$\left[\Delta\Pi^{EM,\tau}(Q^2)\right]_{D=2} = \frac{3}{2\pi^2} \frac{\bar{m}_s}{Q^2} \left[0 + \frac{1}{3}\bar{a} + 4.3839\bar{a}^2 + 44.943\bar{a}^3 + \cdots\right]$$

$$\begin{split} \left[\Delta\Pi(Q^2)\right]_{D=4} &= \frac{\langle m_s \bar{s}s \rangle - \langle m_\ell \bar{\ell}\ell \rangle}{Q^4} \left[-2 - 2\bar{a} - \frac{26}{3}\bar{a}^2 \right] \\ \left[\Delta\Pi^{EM,\tau}(Q^2)\right]_{D=4} &= \frac{\langle m_s \bar{s}s \rangle - \langle m_\ell \bar{\ell}\ell \rangle}{Q^4} \left[0 + \frac{8}{3}\bar{a} + \frac{59}{3}\bar{a}^2 \right] \end{split}$$

• FESRs based on $\Delta\Pi^{EM,\tau}$ \Rightarrow (suppressing s_0 -dependence of the OPE and spectral integrals)

$$|V_{us}| = \sqrt{\frac{I_{us;V+A}^w}{\frac{3}{2}I_{EM,I=0}^w - \frac{1}{2}I_{ud;V}^w + I_{ud;A}^w - I_{OPE}^w}}$$


(with $I^w_{EM,I=0}$ normalized as for a charged current correlator)

• Strong suppression of D=2,4 contributions $\Rightarrow w(y)$ usable even without improved D=2 convergence, hence e.g. $w_N(y)=1-\frac{N}{N-1}y+\frac{1}{N-1}y^N$

- ullet Advantages of w_N FESR choice:
 - single integrated D > 4 contribution (D = 2N + 2) (up to $O(\alpha_s^2)$ corrections)
 - D=2N+2 suppressed by relevant w_N coefficient, 1/(N-1)
 - $1/s_0^N$ dependence provides handle on integrated D=2N+2 contributions
- NOTE: D>4 typically NOT suppressed at correlator level: E.g. in VSA, D=6 a factor of 9/2 larger for $\Delta\Pi^{EM,\tau}$ than for $\Delta\Pi\Rightarrow$ small relevant coefficient values useful
- However, can fit D>4 strengths to data via s_0 -dependence, especially when only one such contribution present

MIXED τ -EM vs. the $w_{(00)}$ ud-us FESR

 $|V_{us}|$ from the EM- τ FESRs

CURRENT RESULTS/OBSERVATIONS

- The ud us V+A FESRs:
 - Clear s_0 -stability problem for $w_{(00)}$, CIPT D=2; us V+A results \Rightarrow significant OPE component
 - Better convergence, stability with FOPT for $w_{(00)}$, $|V_{us}| = 0.2183(5)_{ud}(22)_{us}(??)_{th}$ (~ 0.0020 higher c.f. CIPT)
 - Best of improved CIPT convergence weights, \hat{w}_{10} , yields $|V_{us}| = 0.2182(5)_{ud}(22)_{us}(??)_{th}$
 - OPE uncertainties (s_0 -instability, w(y)-dependence) clearly much larger than $\delta V_{us} \sim 0.0005$ at present

— Upward B shifts for as-yet-unremeasured us modes could still shift $\left|V_{us}\right|$ significantly, but N.B. re stability issues

• EM-τ FESR results:

- Good s_0 -stability, w(y) independence
- For $w_{(00)}$, $s_0 = m_\tau^2$, including variation with weight-choice in theory error (totally dominant)

$$|V_{us}| = 0.2214 (22)_{us;V+A}(5)_{ud;V,A}(28)_{EM}(6)_{th}$$

- Theory errors much better BUT experimental errors much worse c.f. ud-us V+A (EM- τ spectral integral differences, with independent errors)

FUTURE PROSPECTS/DIRECTIONS

• The ud - us V+A FESRs:

- Many us B errors already reduced, others still needed
- Ingredients for full remeasurement of actual us spectral distribution in place and work in progress
- Some obvious targets for near term BaBar, Belle attention $(K^-\pi^0\pi^0, K3\pi, K4\pi, \cdots)$
- Updates on ud 2π , 4π τ decay modes desirable
- Better understanding of D=2 OPE truncation error needed to significantly reduce theory error

• The flavor-breaking EM- τ FESR:

- us V+A error reductions as per the ud-us V+A FESRs
- Much improved s_0 -stability, w(y)-independence compatible with OPE as significant error source for ud-us V+A FESRs
- Need resolution of EM vs τ $\pi\pi$ and 4π issues
- Significantly reduced I=0 EM cross-section errors needed to make competitive with other methods

SUPPLEMENTARY PAGES

ullet Details on the handling of potential D>6 OPE contributions

ullet Rough scale of longitudinal subtraction, (0+1) OPE relative to ud spectral integrals

 \bullet Details on the integrated D=2 for improved-CIPT-convergence Kambor-Maltman weights

• Impact of 3σ increases of $B[K^-2\pi^0]$, B[K3pi] on $|V_{us}|$ from the us V+A FESR

HIGHER D OPE CONTRIBUTIONS

 \bullet rough estimates for D=6 condensates, D>6 combinations unknown, usually assumed negligible

• $w(y) = \sum_{m} c_{m} y^{m}$, $y = s/s_{0} \Rightarrow \text{ integrated } D = 2k + 2$ OPE $\propto c_{k}/s_{0}^{k}$ (up to logs) \Rightarrow avoid large c_{k} , $k \geq 2$

• neglect of non-negligible higher D terms $\Rightarrow s_0$ -instability of output \Rightarrow need to study output as function of s_0

RELATIVE SCALES IN THE ud-us V+A FESR

E.g., $ud - us \ V + A$, $s_0 = m_{\tau}^2$ contributions:

- $R_{ud;V+A} = 3.478(16)$
- Longitudinal subtraction $\left[\delta R_{\tau}^{(0)}\right]_{L}=0.1544(37)$ (0.1204 from K, π poles, 0.0340 from continuum)
- $\left[\delta R_{\tau}^{(0+1)}\right]_{OPE}=$ 0.0612(15) (Gamiz et al. 2008) [90% of uncertainty from m_s^2 D= 2 scale]

CONVERGENCE OF w_{10} , \hat{w}_{10} and w_{20} -WEIGHTED D=2 OPE SERIES FOR VARIOUS D=2 PRESCRIPTIONS, $s_0=m_{\tau}^2$

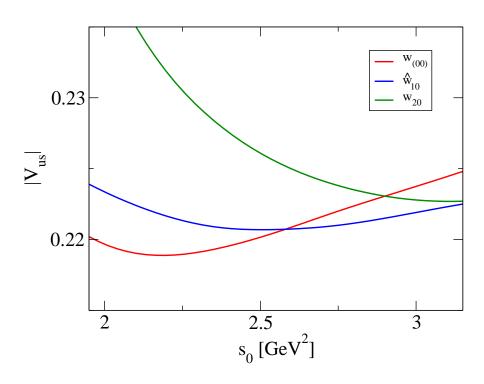
First lines: CIPT + Adler function; second lines: CIPT
 + correlator; third lines: FOPT

• \widehat{w}_{10} :

$$\sim [1 + 0.391 + 0.278 + 0.215 + (0.167) + \cdots]$$

 $\sim [1 + 0.241 + 0.185 + 0.150 + (0.109) + \cdots]$
 $\sim [1 + 0.514 + 0.432 + 0.400 + (0.411) + \cdots]$

• *w*₁₀:


$$\sim [1 + 0.371 + 0.246 + 0.173 + (0.115) + \cdots]$$

 $\sim [1 + 0.226 + 0.160 + 0.114 + (0.062) + \cdots]$
 $\sim [1 + 0.487 + 0.387 + 0.332 + (0.325) + \cdots]$

• *w*₂₀:

$$\sim [1 + 0.412 + 0.307 + 0.246 + (0.198) + \cdots]$$

 $\sim [1 + 0.255 + 0.205 + 0.172 + (0.126) + \cdots]$
 $\sim [1 + 0.558 + 0.502 + 0.490 + (0.535) + \cdots]$

Impact of 3σ increases of $B[K^-2\pi^0]$, $B[K3\pi]$ on $|V_{us}|$ from the us V+A FESR

us V+A FESR, $\overline{K}^2\pi^0$, $\overline{K}3\pi$ up 3 σ

