$F_{\mathcal{K}}/F_{\pi}$ from BMW [Budapest-Marseille-Wuppertal Collaboration]

Alberto Ramos

<alberto.ramos@cpt.univ-mrs.fr>

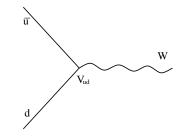
Centre de Physique Théorique (CNRS) - Marseille

6th international workshop on the CKM unitarity triangle

Dürr, Fodor, Hoelbling, Hoffman, Katz, Krieg, Kurth, Lellouch, Lippert, Ramos, Szabo

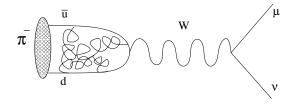
[Phys.Rev.D 81 (2010)]

Obtaining CKM matrix elements



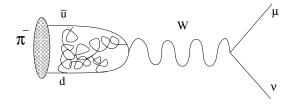
You get them from quark-W vertex.

Obtaining CKM matrix elements



$$\Gamma(\pi \to \mu \nu_{\mu}) = \frac{G^2 M_{\pi} m_{\mu}^2}{8\pi} \left(1 - \frac{m_{\mu}^2}{M_{\pi}^2}\right)^2 \times |V_{ud}|^2 \times |F_{\pi}|^2$$

Obtaining CKM matrix elements



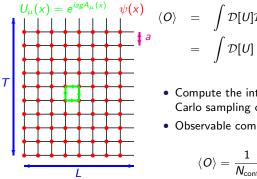
$$\Gamma(\pi
ightarrow \mu
u_\mu) = rac{G^2 M_\pi m_\mu^2}{8\pi} \left(1 - rac{m_\mu^2}{M_\pi^2}
ight)^2 imes |V_{ud}|^2 imes |F_\pi|^2$$

Common structure for weak decays: Product of

- Kinematic factor
- CKM Matrix element
- Non perturbative QCD factor

Lattice QCD in one slide

Lattice field theory \longrightarrow Non Perturbative definition of QFT.



$$= \int \mathcal{D}[U] \mathcal{D}\overline{\psi} \mathcal{D}\psi O(U, \overline{\psi}, \psi) e^{-S_G[U] - S_F[U, \overline{\psi}, \psi]}$$
$$= \int \mathcal{D}[U] O(U)_{\text{Wick}} e^{-S_G[U]} \det(D)$$

- Compute the integral numerically → Monte Carlo sampling of e^{-S_G[U]} det(D) ≥ 0.
- Observable computed averaging over samples

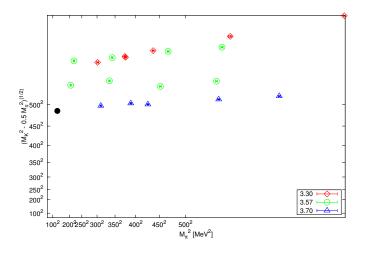
$$\langle O
angle = rac{1}{N_{ ext{conf}}} \sum_{i=1}^{N_{ ext{conf}}} O(U_i) + \mathcal{O}(1/\sqrt{N_{ ext{conf}}})$$

NOT A MODEL: Lattice QCD <u>IS</u> real world QCD ($a \rightarrow 0, L \rightarrow \infty, ...$)

Lattice QCD Timeline

- 1974 First formulation of a non-Abelian gauge theory on a space-time lattice [Wilson. Phys.Rev D10 (1974)].
- 1980 First lattice simulation: Pure SU(2) gauge theory in a lattice up to 10^4 . [Creutz. Phys.Rev D21 (1980)].
- 1985 Firsts unquenched simulations: 2×4^3 to 4×8^3 lattices. [Duane, Kogut. Phys.Rev.Lett. 55 (1985)].
- '90s Quenched lattice QCD reign. Formally large N_c limit of QCD. Error $\sim 1/N_c \approx 30\% \rightarrow$ Uncontrolled systematics.
- '00s Unquenched simulation comes up.
- Present Start of precision lattice QCD era: Large volumes, physical quark masses, etc...

Reaching the physical point



2008 BMW data set.

5 / 14

Error source for a lattice computation

A lattice simulation is different from real QCD only because:

- We use Monte-Carlo methods to estimate the value of the integral. $\mathit{N}_{\mathrm{conf}} < \infty.$
- Some quarks are heavier in the lattice than in real world. $m_{ud} > m_{ud}^{\rm phys}$, $m_s \gtrsim m_s^{\rm phys}$.
- Simulate a finite volume limit $L < \infty$
- Need experimetal input to "set the scale".
- Simulate with a > 0.
- Correlators receive corrections from excited states $T < \infty$.

$$C(t) \equiv \left(\frac{a}{L}\right)^{3} \sum_{\vec{x}} \langle [\bar{d}\gamma_{5}u](x) [\bar{u}\gamma_{5}d](0) \rangle \stackrel{0 \ll t \ll T}{\longrightarrow} \frac{\langle 0|\bar{d}\gamma_{5}u|\pi^{+}(\vec{0})\rangle \langle \pi^{+}(\vec{0})|\bar{u}\gamma_{5}d|0\rangle}{2M_{\pi}} e^{-M_{\pi}t}$$

Error source for a lattice computation

A lattice simulation is different from real QCD only because:

- We use Monte-Carlo methods to estimate the value of the integral. $\mathit{N}_{\mathrm{conf}} < \infty.$
- Some quarks are heavier in the lattice than in real world. $m_{ud} > m_{ud}^{\rm phys}$, $m_s \gtrsim m_s^{\rm phys}$.
- Simulate a finite volume limit $L < \infty$
- Need experimetal input to "set the scale".
- Simulate with a > 0.
- Correlators receive corrections from excited states $T < \infty$.

$$C(t) \equiv \left(\frac{a}{L}\right)^{3} \sum_{\vec{x}} \langle [\bar{d}\gamma_{5}u](x) [\bar{u}\gamma_{5}d](0) \rangle \stackrel{0 \ll t \ll T}{\longrightarrow} \frac{\langle 0|\bar{d}\gamma_{5}u|\pi^{+}(\vec{0})\rangle \langle \pi^{+}(\vec{0})|\bar{u}\gamma_{5}d|0\rangle}{2M_{\pi}} e^{-M_{\pi}t}$$

Control of errors

All the sources of error should be under control.

Examine the decay ratio

$$\frac{\Gamma(K \to \mu \overline{\nu}_{\mu})}{\Gamma(\pi \to \mu \overline{\nu}_{\mu})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{M_{\kappa} (1 - m_{\mu}^2/M_{\kappa}^2)^2}{M_{\pi} (1 - m_{\mu}^2/M_{\pi}^2)^2} \left[1 + \frac{\alpha}{\pi} (C_{\kappa} - C_{\pi}) \right] \frac{F_{\kappa}}{F_{\pi}}$$

Examine the decay ratio

$$\frac{\Gamma(K \to \mu \overline{\nu}_{\mu})}{\Gamma(\pi \to \mu \overline{\nu}_{\mu})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{M_{\kappa} (1 - m_{\mu}^2/M_{\kappa}^2)^2}{M_{\pi} (1 - m_{\mu}^2/M_{\pi}^2)^2} \left[1 + \frac{\alpha}{\pi} (C_{\kappa} - C_{\pi})\right] \frac{F_{\kappa}}{F_{\pi}}$$

• Blue "things" are well determined: cross sections with radiative corrections (0.4%), masses (relative precision from 3×10^{-5} to 10^{-7})

Examine the decay ratio

$$\frac{\Gamma(K \to \mu \overline{\nu}_{\mu})}{\Gamma(\pi \to \mu \overline{\nu}_{\mu})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{M_{\kappa} (1 - m_{\mu}^2/M_{\kappa}^2)^2}{M_{\pi} (1 - m_{\mu}^2/M_{\pi}^2)^2} \left[1 + \frac{\alpha}{\pi} (C_{\kappa} - C_{\pi})\right] \frac{F_{\kappa}}{F_{\pi}}$$

- Blue "things" are well determined: cross sections with radiative corrections (0.4%), masses (relative precision from 3×10^{-5} to 10^{-7})
- $|V_{ud}|$ can be determined from super-allowed nuclear β -decays with an accuracy better than 0.03%.

Examine the decay ratio

$$\frac{\Gamma(K \to \mu \overline{\nu}_{\mu})}{\Gamma(\pi \to \mu \overline{\nu}_{\mu})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{M_{\kappa} (1 - m_{\mu}^2/M_{\kappa}^2)^2}{M_{\pi} (1 - m_{\mu}^2/M_{\pi}^2)^2} \left[1 + \frac{\alpha}{\pi} (C_{\kappa} - C_{\pi})\right] \frac{F_{\kappa}}{F_{\pi}}$$

- Blue "things" are well determined: cross sections with radiative corrections (0.4%), masses (relative precision from 3×10^{-5} to 10^{-7})
- $|V_{ud}|$ can be determined from super-allowed nuclear β -decays with an accuracy better than 0.03%.

Conclusion

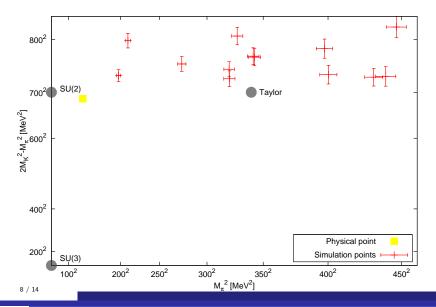
 $|V_{us}|$ can be determined with an accurate determination of F_{κ}/F_{π} .

Examine the decay ratio

$$\frac{\Gamma(K \to \mu \overline{\nu}_{\mu})}{\Gamma(\pi \to \mu \overline{\nu}_{\mu})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{M_{\kappa}(1 - m_{\mu}^2/M_{\kappa}^2)^2}{M_{\pi}(1 - m_{\mu}^2/M_{\pi}^2)^2} \left[1 + \frac{\alpha}{\pi}(C_{\kappa} - C_{\pi})\right] \frac{F_{\kappa}}{F_{\pi}}$$

Some "numerology"

- F_{κ}/F_{π} to 0.4% to match precision of $|V_{ud}|$ contribution to unitarity relation.
- F_{κ}/F_{π} to 0.25% to match experimental error in $\Gamma(K \to \mu \overline{\nu}_{\mu})/\Gamma(\pi \to \mu \overline{\nu}_{\mu}) \times [1 + \frac{\alpha}{\pi}(C_{\kappa} - C_{\pi})]^{-1}.$



Which is the correct method?

Which is the correct method?

• SU(3) ChPT. (3 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460$ MeV).

SU(3) Formula

$$\frac{F_{\kappa}}{F_{\pi}} = 1 + \frac{1}{32\pi^2 F_0^2} \left[\frac{5}{4} \mu_{\pi}^2 - \frac{1}{2} \mu_{\kappa}^2 - \frac{3}{4} \mu_{\eta}^2 \right] + \frac{4}{F_0^2} L_5 (M_{\kappa}^2 - M_{\pi}^2)$$

Which is the correct method?

• SU(3) ChPT. (3 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460$ MeV).

SU(3) Formula

$$\frac{F_{\kappa}}{F_{\pi}} = \frac{1}{1 + \frac{1}{32\pi^2 F_0^2} \left[\frac{5}{4}\mu_{\pi}^2 - \frac{1}{2}\mu_{\kappa}^2 - \frac{3}{4}\mu_{\eta}^2\right] + \frac{4}{F_0^2}L_5(M_{\kappa}^2 - M_{\pi}^2)}$$

Which is the correct method?

• SU(2) ChPT. (2 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460$ MeV).

SU(2) Formula

$$\frac{F_{K}}{F_{\pi}} = \frac{F}{\overline{F}} \left\{ 1 + \frac{\alpha}{(4\pi F)^{2}} [(2M_{K}^{2} - M_{\pi}^{2}) - (...)_{\mathsf{phys}}] \right\} \left\{ 1 + \frac{5}{8}\mu_{\pi}^{2} + \Delta L_{4}\frac{M_{\pi}^{2}}{(4\pi F)^{2}} \right\}$$

Which is the correct method?

• SU(2) ChPT. (2 Formulas, 2 $M_{\pi}^{cut} = 350,460$ MeV).

SU(2) Formula

$$\frac{F_{\mathcal{K}}}{F_{\pi}} = \frac{1}{\frac{F}{\overline{F}} \left\{ 1 + \frac{\alpha}{(4\pi F)^2} [(2M_{\mathcal{K}}^2 - M_{\pi}^2) - (...)_{\mathsf{phys}}] \right\} \left\{ 1 + \frac{5}{8} \mu_{\pi}^2 + \Delta L_4 \frac{M_{\pi}^2}{(4\pi F)^2} \right\}}$$

Which is the correct method?

• Taylor expansion. (2 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460 \text{ MeV}$).

Taylor Expansions

$$rac{F_{\mathcal{K}}}{F_{\pi}} = \mathcal{A}_0 + \mathcal{A}_1 \Delta_{\pi} + \mathcal{A}_2 \Delta_{\pi}^2 + \mathcal{B}_1 \Delta_{\mathcal{K}}$$

Which is the correct method?

• Taylor expansion. (2 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460 \text{ MeV}$).

Taylor Expansions

$$\frac{F_{\kappa}}{F_{\pi}} = \frac{1}{A_0 + A_1 \Delta_{\pi} + A_2 \Delta_{\pi}^2 + B_1 \Delta_{\kappa}}$$

Which is the correct method?

- SU(3) ChPT. (3 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460$ MeV).
- SU(2) ChPT. (2 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460$ MeV).
- Taylor expansion. (2 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460 \text{ MeV}$).

Fundamental idea of the analysis.

Use all the approaches:

• Weight them with the quality of fit.

Which is the correct method?

- SU(3) ChPT. (3 Formulas, 2 $M_{\pi}^{cut} = 350,460$ MeV).
- SU(2) ChPT. (2 Formulas, 2 $M_{\pi}^{cut} = 350,460$ MeV).
- Taylor expansion. (2 Formulas, 2 $M_{\pi}^{\text{cut}} = 350,460 \text{ MeV}$).

Fundamental idea of the analysis.

Use all the approaches:

- Weight them with the quality of fit.
- Use difference between them to estimate the systematic error.

Lüscher approach and ChPT

Lüscher approach and ChPT

• The leading term in the correction of masses and decay constants goes with $\exp(-M_{\pi}L) \Longrightarrow (M_{\pi}L \gtrsim 4)$ small finite volume effects in our simulations.

Lüscher approach and ChPT

- The leading term in the correction of masses and decay constants goes with $\exp(-M_{\pi}L) \Longrightarrow (M_{\pi}L \gtrsim 4)$ small finite volume effects in our simulations.
- ChPT allows to determine the dependence of masses and decay constants with the volume

$$\frac{F_{\kappa}(L)}{F_{\pi}(L)} = \frac{F_{\kappa}}{F_{\pi}} \left\{ 1 + \left[4 - \frac{3F_{\pi}}{2F_{\kappa}} \right] \sum_{n=1}^{\infty} \frac{m(n)}{\sqrt{n}} \frac{1}{M_{\pi}L} \frac{M_{\pi}^2}{(4\pi F_{\pi})^2} \, K_1(\sqrt{n}M_{\pi}L) \right\}$$

Lüscher approach and ChPT

- The leading term in the correction of masses and decay constants goes with $\exp(-M_{\pi}L) \Longrightarrow (M_{\pi}L \gtrsim 4)$ small finite volume effects in our simulations.
- ChPT allows to determine the dependence of masses and decay constants with the volume

$$\frac{F_{K}(L)}{F_{\pi}(L)} = \frac{F_{K}}{F_{\pi}} \left\{ 1 + \left[4 - \frac{3F_{\pi}}{2F_{K}} \right] \sum_{n=1}^{\infty} \frac{m(n)}{\sqrt{n}} \frac{1}{M_{\pi}L} \frac{M_{\pi}^{2}}{(4\pi F_{\pi})^{2}} K_{1}(\sqrt{n}M_{\pi}L) \right\}$$

Way of proceed.

- Correct data before fitting with the two loop expression.
- Use one loop expression and upper bound to estimate the error.

Estimate the effects.

10 / 14

Estimate the effects.

• SU(3) ChPT \implies Cutoff effects cancel in the ratio.

Estimate the effects.

- SU(3) ChPT \implies Cutoff effects cancel in the ratio.
- Action formally $\mathcal{O}(a)$ improved, but cutoff effects seem to go with $\mathcal{O}(a^2)$.

• Estimate them as a flavour breaking term:

$$\propto c imes \begin{cases} a(M_K^2 - M_\pi^2)/\mu_{
m QCD} \ {
m or} \ a^2(M_K^2 - M_\pi^2) \end{cases}$$

• Estimate them as a flavour breaking term:

$$\propto \boldsymbol{c} \times \begin{cases} \boldsymbol{a}(M_K^2 - M_\pi^2)/\mu_{\rm QCD} \\ \text{or} \\ \boldsymbol{a}^2(M_K^2 - M_\pi^2) \end{cases}$$

Fundamental idea of the analysis.

Use all the approaches:

• Weight them with the quality of fit.

Estimate them as a flavour breaking term:

$$\propto \boldsymbol{c} \times \begin{cases} \boldsymbol{a}(M_K^2 - M_\pi^2)/\mu_{\rm QCD} \\ \text{or} \\ \boldsymbol{a}^2(M_K^2 - M_\pi^2) \end{cases}$$

Fundamental idea of the analysis.

Use all the approaches:

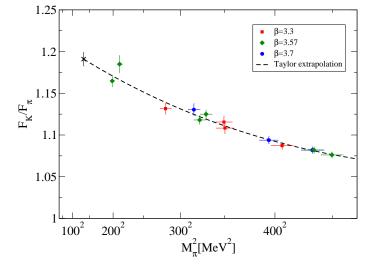
- Weight them with the quality of fit.
- Use difference between them to estimate the systematic error.

Other sources of systematic error

Other sources of systematic error

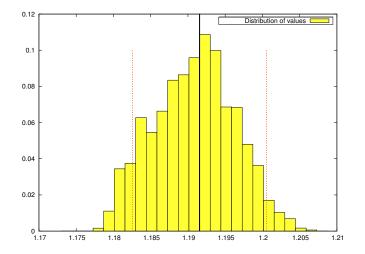
• Excited states: Use 18 different time intervals to fit the correlators.

- Excited states: Use 18 different time intervals to fit the correlators.
- Scale setting: Use M_{π} , M_K and either M_{Ξ} or M_{Ω} to set the scale.



In total we have $2 \times 18 \times 7 \times 2 \times 3 = 1512$ Methods.

<u>Results</u>



Final result

Final result

•

$$\left.\frac{F_{\mathcal{K}}}{F_{\pi}}\right|_{\rm phys} = 1.192(7)_{\rm stat}(6)_{\rm syst}$$

Final result

•

 $\left. \frac{F_{\kappa}}{F_{\pi}} \right|_{\rm phys} = 1.192(7)_{\rm stat}(6)_{\rm syst}$

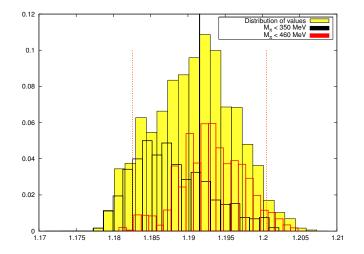
$$|V_{us}| = 0.2256(18)$$

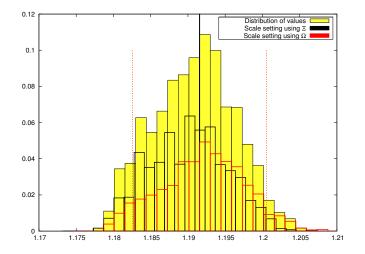
<u>Results</u>

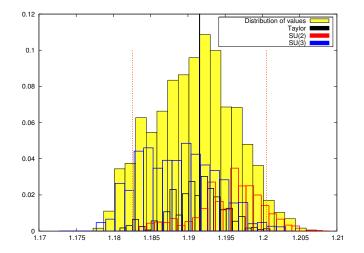
Final result

•
$$\left. \frac{F_{\kappa}}{F_{\pi}} \right|_{\text{phys}} = 1.192(7)_{\text{stat}}(6)_{\text{syst}}$$

• $|V_{us}| = 0.2256(18)$
• $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1.0001(9)$

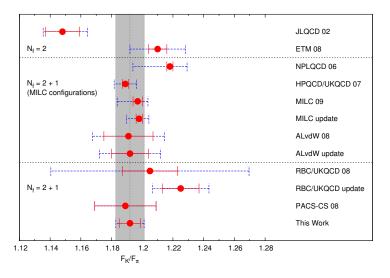






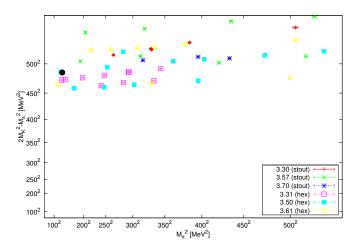
<u>Results</u>

Source of systematic error	error on F_K/F_π
Chiral Extrapolation:	
- Functional form	$3.3 imes10^{-3}$
- Pion mass range	$3.0 imes10^{-3}$
Continuum extrapolation	$3.3 imes10^{-3}$
Excited states	$1.9 imes10^{-3}$
Scale setting	$1.0 imes10^{-3}$
Finite volume	$6.2 imes 10^{-4}$



Future

We have generated new ensembles, directly simulating at the physical point, with four values of the lattice spacing. [C. Hoelbling, LAT10]



• Results for a full QCD computation of F_K/F_{π} .

• Results for a full QCD computation of F_K/F_{π} .

 \circ $F_K/F_{\pi} = 1.192(9)$

- Results for a full QCD computation of F_K/F_{π} .
 - $F_{K}/F_{\pi} = 1.192(9)$
 - \circ 0.75% computation even with a conservative approach to the estimation of errors.

- Results for a full QCD computation of F_K/F_{π} .
 - $F_{K}/F_{\pi} = 1.192(9)$
 - \circ 0.75% computation even with a conservative approach to the estimation of errors.
 - Allow to compute $|V_{us}| = 0.2256(18)$.

- Results for a full QCD computation of F_K/F_{π} .
 - $F_{K}/F_{\pi} = 1.192(9)$
 - \circ 0.75% computation even with a conservative approach to the estimation of errors.
 - Allow to compute $|V_{us}| = 0.2256(18)$.
 - Check CKM unitarity

- Results for a full QCD computation of F_K/F_{π} .
 - \circ $F_K/F_{\pi} = 1.192(9)$
 - $\circ~0.75\%$ computation even with a conservative approach to the estimation of errors.
 - Allow to compute $|V_{us}| = 0.2256(18)$.
 - Check CKM unitarity
- Continuous Evolution for more than 30 years in the lattice. Still lot of work to do, but precision measurements of some quantities is now possible.

- Results for a full QCD computation of F_K/F_{π} .
 - \circ $F_K/F_{\pi} = 1.192(9)$
 - $\circ~0.75\%$ computation even with a conservative approach to the estimation of errors.
 - Allow to compute $|V_{us}| = 0.2256(18)$.
 - Check CKM unitarity
- Continuous Evolution for more than 30 years in the lattice. Still lot of work to do, but precision measurements of some quantities is now possible.
- Caution: If strongly coupled quantum field theory play any role (other than QCD) in physics beyond the standard model, we will have a very hard time.