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Obtaining CKM matrix elements
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You get them from quark-W vertex.
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Common structure for weak decays: Product of

• Kinematic factor

• CKM Matrix element

• Non perturbative QCD factor
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Lattice QCD in one slide

Lattice field theory −→ Non Perturbative definition of QFT.
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Uµ(x) = e iagAµ(x) ψ(x) 〈O〉 =

∫
D[U]DψDψO(U, ψ, ψ)e−SG [U]−SF [U,ψ,ψ]

=

∫
D[U]O(U)Wicke

−SG [U] det(D)

• Compute the integral numerically → Monte
Carlo sampling of e−SG [U] det(D) ≥ 0.

• Observable computed averaging over samples

〈O〉 =
1

Nconf

Nconf∑
i=1

O(Ui ) +O(1/
√

Nconf)

NOT A MODEL: Lattice QCD IS real world QCD (a→ 0, L→∞, ...)
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Lattice QCD Timeline

1974 First formulation of a non-Abelian gauge theory on a space-time
lattice [Wilson. Phys.Rev D10 (1974)].

1980 First lattice simulation: Pure SU(2) gauge theory in a lattice up to
104. [Creutz. Phys.Rev D21 (1980)].

1985 Firsts unquenched simulations: 2× 43 to 4× 83 lattices. [Duane, Kogut.

Phys.Rev.Lett. 55 (1985)].

’90s Quenched lattice QCD reign. Formally large Nc limit of QCD.
Error ∼ 1/Nc ≈ 30% → Uncontrolled systematics.

’00s Unquenched simulation comes up.

Present Start of precision lattice QCD era: Large volumes, physical quark
masses, etc. . .
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Reaching the physical point
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Error source for a lattice computation

A lattice simulation is different from real QCD only because:

• We use Monte-Carlo methods to estimate the value of the integral. Nconf <∞.

• Some quarks are heavier in the lattice than in real world. mud > m
phys
ud ,

ms >∼ m
phys
s .

• Simulate a finite volume limit L <∞
• Need experimetal input to “set the scale”.

• Simulate with a > 0.

• Correlators receive corrections from excited states T <∞.

C(t) ≡
( a
L

)3∑
~x

〈[d̄γ5u](x)[ūγ5d ](0)〉 0�t�T−→ 〈0|d̄γ5u|π+(~0)〉〈π+(~0)|ūγ5d |0〉
2Mπ

e−Mπt

Control of errors
All the sources of error should be under control.
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Marciano’s suggestion

Examine the decay ratio

Γ(K → µνµ)

Γ(π → µνµ)
=
|Vus |2

|Vud |2
MK (1−m2

µ/M
2
K )2

Mπ(1−m2
µ/M2

π)2

[
1 +

α

π
(CK − Cπ)

]FK

Fπ

• Blue “things” are well determined: cross sections with radiative corrections
(0.4%), masses (relative precision from 3× 10−5 to 10−7)

• |Vud | can be determined from super-allowed nuclear β−decays with an
accuracy better than 0.03%.

Conclusion
|Vus | can be determined with an accurate determination of FK/Fπ.
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K )2

Mπ(1−m2
µ/M2

π)2

[
1 +

α

π
(CK − Cπ)

]FK

Fπ

Some “numerology”

• FK/Fπ to 0.4% to match precision of |Vud | contribution to unitarity relation.

• FK/Fπ to 0.25% to match experimental error in

Γ(K → µνµ)/Γ(π → µνµ)×
[
1 + α

π
(CK − Cπ)

]−1
.
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Chiral extrapolation.
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Chiral extrapolation.

Which is the correct method?

• SU(3) ChPT. (3 Formulas, 2 Mcut
π = 350, 460 MeV).

• SU(2) ChPT. (2 Formulas, 2 Mcut
π = 350, 460 MeV).

• Taylor expansion. (2 Formulas, 2 Mcut
π = 350, 460 MeV).
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• Weight them with the quality of fit.

• Use difference between them to estimate the systematic error.
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Finite volume

Lüscher approach and ChPT

• The leading term in the correction of masses and decay constants goes with
exp(−MπL) =⇒ (MπL >∼ 4) small finite volume effects in our simulations.

• ChPT allows to determine the dependence of masses and decay constants with
the volume

FK (L)

Fπ(L)
=

FK

Fπ

{
1 +

[
4− 3Fπ

2FK

] ∞∑
n=1

m(n)√
n

1

MπL

M2
π

(4πFπ)2
K1(
√
nMπL)

}

Way of proceed.

• Correct data before fitting with the two loop expression.

• Use one loop expression and upper bound to estimate the error.
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Continuum extrapolation

Estimate the effects.

• SU(3) ChPT =⇒ Cutoff effects cancel in the ratio.

• Action formally O(a) improved, but cutoff effects seem to go with O(a2).
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Continuum extrapolation

• Estimate them as a flavour breaking term:

∝ c ×


a(M2

K −M2
π)/µQCD

or
a2(M2

K −M2
π)
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Other sources of systematic error

• Excited states: Use 18 different time intervals to fit the correlators.

• Scale setting: Use Mπ, MK and either MΞ or MΩ to set the scale.
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Results
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In total we have 2× 18× 7× 2× 3 = 1512 Methods.
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Results

Final result

•
FK

Fπ

∣∣∣∣
phys

= 1.192(7)stat(6)syst

•
|Vus | = 0.2256(18)

•
|Vud|2 + |Vus|2 + |Vub|2 = 1.0001(9)
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Results

Source of systematic error error on FK/Fπ
Chiral Extrapolation:
- Functional form 3.3× 10−3

- Pion mass range 3.0× 10−3

Continuum extrapolation 3.3× 10−3

Excited states 1.9× 10−3

Scale setting 1.0× 10−3

Finite volume 6.2× 10−4
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Results
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This Work
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(MILC configurations)

Nf = 2 + 1
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Future
We have generated new ensembles, directly simulating at the physical point, with
four values of the lattice spacing. [C. Hoelbling. LAT10]
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Conclusions

• Results for a full QCD computation of FK/Fπ.

◦ FK/Fπ = 1.192(9)
◦ 0.75% computation even with a conservative approach to the estimation of errors.
◦ Allow to compute |Vus | = 0.2256(18).
◦ Check CKM unitarity

• Continuous Evolution for more than 30 years in the lattice. Still lot of work to
do, but precision measurements of some quantities is now possible.

• Caution: If strongly coupled quantum field theory play any role (other than
QCD) in physics beyond the standard model, we will have a very hard time.
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