# Lifetimes and mixing parameters of neutral $b$ hadrons 

Ulrich Nierste

Karlsruhe Institute of Technology


CKM2010, September 2010
in memory of Nicola Cabibbo
(10 Apr 1935-16 Aug 2010)

May 14, 2010
Fermilab Wine\&Cheese seminar, talk by Guennadi Borrisov:
Evidence for an anomalous like-sign dimuon charge asymmetry

May 14, 2010
Fermilab Wine\&Cheese seminar, talk by Guennadi Borrisov:
Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010
The New York Times:
Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

May 14, 2010
Fermilab Wine\&Cheese seminar, talk by Guennadi Borrisov:
Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010
The New York Times:
Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

Joe Lykken, a theorist at Fermilab, said, "So I would not say that this announcement is the equivalent of seeing the face of God, but it might turn out to be the toe of God."

## Contents

## $\mathrm{B}-\overline{\mathrm{B}}$ mixing basics

The average $B_{s}$ width

Global analysis of $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing and $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing

Conclusions

## $\mathrm{B}-\overline{\mathrm{B}}$ mixing basics

Consider $\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing with $q=d$ or $q=s$ :
A meson identified ("tagged") as a $B_{q}$ at time $t=0$ is described by $\left|B_{q}(t)\right\rangle$.


## $\mathrm{B}-\overline{\mathrm{B}}$ mixing basics

Consider $\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing with $q=d$ or $q=s$ :
A meson identified ("tagged") as a $B_{q}$ at time $t=0$ is described by $\left|B_{q}(t)\right\rangle$.


For $t>0$ :

$$
\left|B_{q}(t)\right\rangle=\left\langle B_{q} \mid B_{q}(t)\right\rangle\left|B_{q}\right\rangle+\left\langle\bar{B}_{q} \mid B_{q}(t)\right\rangle\left|\bar{B}_{q}\right\rangle+\ldots,
$$

with "..." denoting the states into which $B_{q}(t)$ can decay.

## $\mathrm{B}-\overline{\mathrm{B}}$ mixing basics

Consider $\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing with $q=d$ or $q=s:$
A meson identified ("tagged") as a $B_{q}$ at time $t=0$ is described by $\left|B_{q}(t)\right\rangle$.


For $t>0$ :

$$
\left|B_{q}(t)\right\rangle=\left\langle B_{q} \mid B_{q}(t)\right\rangle\left|B_{q}\right\rangle+\left\langle\bar{B}_{q} \mid B_{q}(t)\right\rangle\left|\bar{B}_{q}\right\rangle+\ldots,
$$

with ". .." denoting the states into which $B_{q}(t)$ can decay.

Analogously: $\left|\bar{B}_{q}(t)\right\rangle$ is the ket of a meson tagged as a $\bar{B}_{q}$ at time $t=0$.

Schrödinger equation:

$$
i \frac{d}{d t}\binom{\left\langle B_{q} \mid B_{q}(t)\right\rangle}{\left\langle\bar{B}_{q} \mid B_{q}(t)\right\rangle}=\left(M^{q}-i \frac{\Gamma^{q}}{2}\right)\binom{\left\langle B_{q} \mid B_{q}(t)\right\rangle}{\left\langle\bar{B}_{q} \mid B_{q}(t)\right\rangle}
$$

with the $2 \times 2$ mass and decay matrices $M^{q}=M^{9 \dagger}$ and $\Gamma^{q}=\Gamma^{q \dagger}$.
$\left.\begin{array}{l}\left\langle B_{q} \mid \bar{B}_{q}(t)\right\rangle \\ \left\langle\bar{B}_{q} \mid \bar{B}_{q}(t)\right\rangle\end{array}\right)$ obeys the same Schrödinger equation.

Schrödinger equation:

$$
i \frac{d}{d t}\binom{\left\langle B_{q} \mid B_{q}(t)\right\rangle}{\left\langle\bar{B}_{q} \mid B_{q}(t)\right\rangle}=\left(M^{q}-i \frac{\Gamma^{q}}{2}\right)\binom{\left\langle B_{q} \mid B_{q}(t)\right\rangle}{\left\langle\bar{B}_{q} \mid B_{q}(t)\right\rangle}
$$

with the $2 \times 2$ mass and decay matrices $M^{q}=M^{9 \dagger}$ and $\Gamma^{q}=\Gamma^{q \dagger}$.
$\binom{\left\langle B_{q} \mid \bar{B}_{q}(t)\right\rangle}{\left\langle\bar{B}_{q} \mid \bar{B}_{q}(t)\right\rangle}$ obeys the same Schrödinger equation.

3 physical quantities in $\mathrm{B}_{\mathrm{q}}-\overline{\mathrm{B}}_{\mathrm{q}}$ mixing:

$$
\left|M_{12}^{q}\right|, \quad\left|\Gamma_{12}^{q}\right|, \quad \phi_{q} \equiv \arg \left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right)
$$

Diagonalise $M^{q}-i \frac{\Gamma^{q}}{2}$ to find the two mass eigenstates:
Lighter eigenstate: $\quad\left|B_{L}^{q}\right\rangle=p\left|B_{q}\right\rangle+q\left|\bar{B}_{q}\right\rangle$.
Heavier eigenstate: $\left|B_{H}^{q}\right\rangle=p\left|B_{q}\right\rangle-q\left|\bar{B}_{q}\right\rangle$
with masses $M_{L, H}^{q}$ and widths $\Gamma_{L, H}^{q}$.
Further $|p|^{2}+|q|^{2}=1$.

Diagonalise $M^{q}-i \frac{\Gamma^{q}}{2}$ to find the two mass eigenstates:

$$
\begin{aligned}
\text { Lighter eigenstate: } & \left|B_{L}^{q}\right\rangle=p\left|B_{q}\right\rangle+q\left|\bar{B}_{q}\right\rangle . \\
\text { Heavier eigenstate: } & \left|B_{H}^{q}\right\rangle=p\left|B_{q}\right\rangle-q\left|\bar{B}_{q}\right\rangle
\end{aligned}
$$

with masses $M_{L, H}^{q}$ and widths $\Gamma_{L, H}^{q}$.
Further $|p|^{2}+|q|^{2}=1$.
Relation of $\Delta m_{q}$ and $\Delta \Gamma_{q}$ to $\left|M_{12}^{q}\right|,\left|\Gamma_{12}^{q}\right|$ and $\phi_{q}$ :

$$
\begin{aligned}
\Delta m_{q} & =M_{H}^{q}-M_{L}^{q} \simeq 2\left|M_{12}^{q}\right| \\
\Delta \Gamma_{q} & =\Gamma_{L}^{q}-\Gamma_{H}^{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \phi_{q}
\end{aligned}
$$

In the Standard Model $\phi_{d} \approx-5^{\circ}$ and $\phi_{d} \approx 0.2^{\circ}$, so that

$$
\Delta \Gamma_{q}^{\mathrm{SM}} \simeq 2\left|\Gamma_{12}^{q}\right|
$$



## $\mathrm{B}-\overline{\mathrm{B}}$ mixing and new physics

New physics cannot affect $\Gamma_{12}^{s}$, which stems from CKMfavoured tree-level decays.

New physics can barely affect $\Gamma_{12}^{d}$, which stems from singly Cabibbo-suppressed tree-level decays.


## $\mathrm{B}-\overline{\mathrm{B}}$ mixing and new physics

New physics cannot affect $\Gamma_{12}^{s}$, which stems from CKMfavoured tree-level decays.

New physics can barely affect $\Gamma_{12}^{d}$, which stems from singly Cabibbo-suppressed tree-level decays.

$M_{12}^{q}$ is very sensitive to virtual effects of new heavy particles. A priori new physics at the TeV scale typically comes with $\left|M_{12}^{q}\right| \gg\left|M_{12}^{\text {SM,q }}\right|$ ("new-physics flavour problem").
$\Rightarrow \quad$ Substantial changes in $\left|M_{12}^{q}\right|$ and $\phi_{q}$ are possible.

Average width: $\Gamma_{q}=\frac{\Gamma_{L}^{q}+\Gamma_{H}^{q}}{2}$
SM predictions:
In the ratio $\left|\Gamma_{12}^{q}\right| /\left|M_{12}^{\mathrm{SM}, \mathrm{q}}\right|$ hadronic uncertainties cancel to a large extent.

$$
\begin{aligned}
& \frac{\left|\Gamma_{12}^{d}\right|}{\left|M_{12}^{d, S M}\right|}=\frac{2\left|\Gamma_{12}^{d}\right|}{\left|\Delta m_{d}^{S M}\right|}=\left(53_{-13}^{+11}\right) \cdot 10^{-4} \\
& \Delta m_{d}^{\exp }=\left.0.51 \mathrm{ps}^{-1} \quad \Rightarrow \quad \frac{2\left|\Gamma_{12}^{d}\right|}{\Gamma_{d}}\right|_{\mathrm{SM}}=\left(41_{-10}^{+9}\right) \cdot 10^{-4}
\end{aligned}
$$

Lenz, UN 2006

Average width: $\Gamma_{q}=\frac{\Gamma_{L}^{q}+\Gamma_{H}^{q}}{2}$
SM predictions:
In the ratio $\left|\Gamma_{12}^{q}\right| /\left|M_{12}^{\mathrm{SM}, \mathrm{q}}\right|$ hadronic uncertainties cancel to a large extent.

$$
\begin{aligned}
& \frac{\left|\Gamma_{12}^{d}\right|}{\left|M_{12}^{d, S M}\right|}=\frac{2\left|\Gamma_{12}^{d}\right|}{\left|\Delta m_{d}^{S M}\right|}=\left(53_{-13}^{+11}\right) \cdot 10^{-4} \\
& \Delta m_{d}^{\exp }=\left.0.51 \mathrm{ps}^{-1} \quad \Rightarrow \quad \frac{2\left|\Gamma_{12}^{d}\right|}{\Gamma_{d}}\right|_{\mathrm{SM}}=\left(41_{-10}^{+9}\right) \cdot 10^{-4}
\end{aligned}
$$

Lenz, UN 2006

$$
\Delta \Gamma_{d}=2\left|\Gamma_{12}^{d}\right| \cos \left(\phi_{d}\right) \geq 2\left|\Gamma_{12}^{d}\right| 0.94
$$

because we know from global fits to the unitarity triangle that $-20^{\circ} \leq \phi_{d} \leq 3^{\circ}$ at $3 \sigma$ CL.

In the $B_{s}$ system $\Delta \Gamma_{s}$ is found together with $\phi_{s}$ from an angular analysis of $B_{s} \rightarrow J / \psi \phi$ data. The calculated value of $\left|\Gamma_{12}^{S}\right|$ defines the physical "yellow band" in the $\left(\Delta \Gamma_{s}, \phi_{s}\right)$ plane.

$$
2\left|\Gamma_{12}^{s}\right|=(0.096 \pm 0.022)\left[\frac{f_{B_{s}} \sqrt{B}}{221 \mathrm{MeV}}\right]^{2} \mathrm{ps}^{-1}
$$

Lenz, UN 2006

In the $B_{s}$ system $\Delta \Gamma_{s}$ is found together with $\phi_{s}$ from an angular analysis of $B_{s} \rightarrow J / \psi \phi$ data. The calculated value of $\left|\Gamma_{12}^{S}\right|$ defines the physical "yellow band" in the $\left(\Delta \Gamma_{s}, \phi_{s}\right)$ plane.

$$
2\left|\Gamma_{12}^{s}\right|=(0.096 \pm 0.022)\left[\frac{f_{B_{s}} \sqrt{B}}{221 \mathrm{MeV}}\right]^{2} \mathrm{ps}^{-1}
$$

Lenz, UN 2006

Update to the 2010 lattice world average $f_{B_{s}} \sqrt{B}=209 \pm 18 \mathrm{MeV}$ :

$$
\begin{aligned}
2\left|\Gamma_{12}^{S}\right| & =\Delta \Gamma_{s}^{S M}=(0.086 \pm 0.025) \mathrm{ps}^{-1} \\
& \Rightarrow \quad \frac{\Delta \Gamma_{s}^{S M}}{\Gamma_{s}}=0.13 \pm 0.04
\end{aligned}
$$

Width difference among the CP eigenstates

$$
\left|B_{s, \mathrm{CP} \pm}\right\rangle=\frac{\left|B_{s}\right\rangle \mp\left|\bar{B}_{s}\right\rangle}{\sqrt{2}}:
$$

$$
\Delta \Gamma_{\mathrm{CP}}=2\left|\Gamma_{12}\right|
$$

unaffected by new physics!

Width difference among the CP eigenstates

$$
\left|B_{s, \mathrm{CP} \pm}\right\rangle=\frac{\left|B_{s}\right\rangle \mp\left|\bar{B}_{s}\right\rangle}{\sqrt{2}}:
$$

$$
\Delta \Gamma_{\mathrm{CP}}=2\left|\Gamma_{12}\right|
$$

unaffected by new physics!
In the simultaneous limits of $N_{c}=\infty, m_{c} \rightarrow \infty$ and $m_{b}-2 m_{c} \rightarrow 0$ one can show

$$
2 B r\left(\bar{B}_{s}^{)} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right)=\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{s}}\left[1+\mathcal{O}\left(\frac{\Delta \Gamma}{\Gamma_{s}}\right)\right]
$$

Aleksan et al. 1993
Corrections of order 100\% cannot be ruled out.

BELLE (arXiv:1005.5177) finds from $\operatorname{Br}\left(\bar{B}_{s}{ }^{\prime} \rightarrow D_{s}^{(*)}+D_{s}^{(*)}{ }_{-}\right)$

$$
\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{s}}=\left.\left.0.147_{-0.030}^{+0.036}\right|_{\text {stat }} ^{+0.042}\right|_{\text {syst }} ^{+0.044}
$$

central value right on top of Lenz, UN 2006 prediction.

BELLE (arXiv:1005.5177) finds from $\operatorname{Br}\left(\bar{B}_{s}{ }^{\prime} \rightarrow D_{s}^{(*)}+D_{s}^{(*)}{ }_{-}\right)$

$$
\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{s}}=\left.\left.0.147_{-0.030}^{+0.036}\right|_{\mathrm{stat}} ^{+0.042}\right|_{\text {syst }} ^{+0.044}
$$

central value right on top of Lenz, UN 2006 prediction.
DØ (Note 6093-CONF of July 2010) finds:

$$
\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{S}}=0.072 \pm 0.030
$$

BELLE (arXiv:1005.5177) finds from $\operatorname{Br}\left(\bar{B}_{s}{ }^{\prime} \rightarrow D_{s}^{(*)}+D_{s}^{(*)}{ }_{-}\right)$

$$
\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{s}}=\left.\left.0.147_{-0.030}^{+0.036}\right|_{\mathrm{stat}} ^{+0.042}\right|_{\mathrm{syst}} ^{+0.044}
$$

central value right on top of Lenz, UN 2006 prediction.
DØ (Note 6093-CONF of July 2010) finds:

$$
\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{s}}=0.072 \pm 0.030
$$

Checks: In the limit $N_{c}=\infty, m_{c} \rightarrow \infty$ and $m_{b}-2 m_{c} \rightarrow 0 \ldots$

- ... the CP-odd eigenstate does not contribute to ${ }^{( } \bar{B}_{s}{ }^{\prime} \rightarrow D_{s}^{(*)+} D_{s}^{(*)}$. The lifetime measured in any of the contributing modes must therefore be $1 / \Gamma_{L}^{s}!$

BELLE (arXiv:1005.5177) finds from $\operatorname{Br}\left(\bar{B}_{s}{ }^{\prime} \rightarrow D_{s}^{(*)}+D_{s}^{(*)}{ }_{-}\right)$

$$
\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{s}}=\left.\left.0.147_{-0.030}^{+0.036}\right|_{\mathrm{stat}} ^{+0.042}\right|_{\mathrm{syst}} ^{+0.044}
$$

central value right on top of Lenz, UN 2006 prediction.
DØ (Note 6093-CONF of July 2010) finds:

$$
\frac{\Delta \Gamma_{\mathrm{CP}}}{\Gamma_{S}}=0.072 \pm 0.030
$$

Checks: In the limit $N_{c}=\infty, m_{c} \rightarrow \infty$ and $m_{b}-2 m_{c} \rightarrow 0 \ldots$

- ... the CP-odd eigenstate does not contribute to ${ }^{( } \bar{B}_{s}{ }^{\prime} \rightarrow D_{s}^{(*)+} D_{s}^{(*)}$. The lifetime measured in any of the contributing modes must therefore be $1 / \Gamma_{L}^{s}!$
- ... no multi-body $\bar{c} \bar{s} \bar{s}$ final states occur.


## The average $B_{s}$ width

Define

$$
\tau_{B_{s}} \equiv \frac{1}{\Gamma_{B_{s}}}
$$

Discuss

$$
\frac{\tau_{B_{s}}}{\tau_{B_{d}}}
$$

Operators:


Wilson Coefficients $\left|C_{1,2}\right| \gg\left|C_{3, \ldots 8}\right|$.

## Weak annihilation

contributes to $\tau_{B_{d}}, \tau_{B_{s}}$ :


The left diagram gives practically the same result for $B_{s}$ and $B_{d}$. The right diagram comes with small penguin coefficients $C_{3 \ldots 6}$.

More small diagrams contributing to $\tau_{B_{s}}$ :


The prediction of $\tau_{B_{s}} / \tau_{B_{d}}$ involves four hadronic matrix element parametrised by $f_{B}^{2} B_{1}, f_{B}^{2} B_{2}, f_{B}^{2} \epsilon_{1}$ and $f_{B}^{2} \epsilon_{2}$.

Neubert,Sachrajda 1996
1997 prediction including penguin effects:

$$
\frac{\tau\left(B_{s}\right)}{\tau\left(B_{d}\right)}-1=(-1.2 \pm 10.0) \cdot 10^{-3} \cdot\left(\frac{f_{B_{s}}}{190 \mathrm{MeV}}\right)^{2}
$$

The prediction of $\tau_{B_{s}} / \tau_{B_{d}}$ involves four hadronic matrix element parametrised by $f_{B}^{2} B_{1}, f_{B}^{2} B_{2}, f_{B}^{2} \epsilon_{1}$ and $f_{B}^{2} \epsilon_{2}$.

Neubert,Sachrajda 1996
1997 prediction including penguin effects:

$$
\frac{\tau\left(B_{s}\right)}{\tau\left(B_{d}\right)}-1=(-1.2 \pm 10.0) \cdot 10^{-3} \cdot\left(\frac{f_{B_{s}}}{190 \mathrm{MeV}}\right)^{2}
$$

Keum,UN 1997
With 2001 quenched lattice values (hep-ph/0110124) for the bag parameters and $f_{B_{s}}=228 \pm 20 \mathrm{MeV}$, $f_{B_{s}} / f_{B_{d}}=1.199 \pm 0.031$ find

$$
-5 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 10^{-3}
$$

HFAG 2010: $\frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1=-0.035 \pm 0.017$.
This is $1.8 \sigma$ away from $-5 \cdot 10^{-3}$.

The prediction of $\tau_{B_{s}} / \tau_{B_{d}}$ involves four hadronic matrix element parametrised by $f_{B}^{2} B_{1}, f_{B}^{2} B_{2}, f_{B}^{2} \epsilon_{1}$ and $f_{B}^{2} \epsilon_{2}$.

Neubert,Sachrajda 1996
1997 prediction including penguin effects:

$$
\frac{\tau\left(B_{s}\right)}{\tau\left(B_{d}\right)}-1=(-1.2 \pm 10.0) \cdot 10^{-3} \cdot\left(\frac{f_{B_{s}}}{190 \mathrm{MeV}}\right)^{2}
$$

Keum,UN 1997
With 2001 quenched lattice values (hep-ph/0110124) for the bag parameters and $f_{B_{s}}=228 \pm 20 \mathrm{MeV}$, $f_{B_{s}} / f_{B_{d}}=1.199 \pm 0.031$ find

$$
-5 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 10^{-3}
$$

HFAG 2010: $\frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1=-0.035 \pm 0.017$.
This is $1.8 \sigma$ away from $-5 \cdot 10^{-3}$.
The discrepancy can be slightly alleviated with a positive new physics contribution to $C_{4}$.

## Global analysis of $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing and $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing

Based on work with A. Lenz and the CKMfitter Group (J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess) arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters $\Delta_{s}$ and $\Delta_{d}$ :

$$
\Delta_{q} \equiv \frac{M_{12}^{q}}{M_{12}^{q, S \mathrm{SM}}}, \quad \Delta_{q} \equiv\left|\Delta_{q}\right| e^{i \phi \vec{a}} .
$$

CP asymmetries in flavour-specific decays (semileptonic CP asymmetries):

$$
\begin{aligned}
& a_{\mathrm{fs}}^{d}=\frac{\left|\Gamma_{12}^{d}\right|}{\left|M_{12}^{d}\right|} \sin \phi_{d}=\frac{\left|\Gamma_{12}^{d}\right|}{\left|M_{12}^{S M, \mathrm{~d}}\right|} \cdot \frac{\sin \phi_{d}}{\left|\Delta_{d}\right|}=\left(5.26_{-1.28}^{+1.15}\right) \cdot 10^{-3} \cdot \frac{\sin \phi_{d}}{\left|\Delta_{d}\right|} \\
& a_{\mathrm{fs}}^{s}=\frac{\left|\Gamma_{12}^{s}\right|}{\left|M_{12}^{s}\right|} \sin \phi_{s}=\frac{\left|\Gamma_{12}^{s}\right|}{\left|M_{12}^{\mathrm{SM}, \mathrm{~s}}\right|} \cdot \frac{\sin \phi_{s}}{\left|\Delta_{s}\right|}=(4.97 \pm 0.94) \cdot 10^{-3} \cdot \frac{\sin \phi_{s}}{\left|\Delta_{s}\right|}
\end{aligned}
$$

A. Lenz, UN, 2006

Why a simultaneous fit to $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing and $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing?

Why a simultaneous fit to $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing and $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing?
Two connections:
(i) The D $\varnothing$ dimuon asymmetry result

$$
a_{\mathrm{fs}}=(-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}
$$

involves a mixture of $B_{d}$ and $B_{s}$ mesons with

$$
a_{\mathrm{fs}}=(0.506 \pm 0.043) a_{\mathrm{fs}}^{d}+(0.494 \pm 0.043) a_{\mathrm{fs}}^{s}
$$

(ii) The global fit to the unitarity triangle involves $\Delta m_{d} / \Delta m_{s}$ as an important constraint.

Why a simultaneous fit to $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing and $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing?
Two connections:
(i) The D $\varnothing$ dimuon asymmetry result

$$
a_{\mathrm{fs}}=(-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}
$$

involves a mixture of $B_{d}$ and $B_{s}$ mesons with

$$
a_{\mathrm{fs}}=(0.506 \pm 0.043) a_{\mathrm{fs}}^{d}+(0.494 \pm 0.043) a_{\mathrm{fs}}^{s}
$$

(ii) The global fit to the unitarity triangle involves $\Delta m_{d} / \Delta m_{s}$ as an important constraint.

Note: in the presence of new physics $A_{C P}^{\operatorname{mix}}\left(B_{d} \rightarrow J / \psi K_{\text {short }}\right)$ measures $\sin \left(2 \beta+\phi_{d}\right)$ rather than $\sin (2 \beta)$.

Three scenarios:
Scenario I: arbitrary complex parameters $\Delta_{s}$ and $\Delta_{d}$
Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and $y_{b}$ is small: one real parameter $\Delta=\Delta_{s}=\Delta_{d}$
Scenario III: MFV with a large $y_{b}$ : one complex parameter $\Delta=\Delta_{s}=\Delta_{d}$

Three scenarios:
Scenario I: arbitrary complex parameters $\Delta_{s}$ and $\Delta_{d}$
Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and $y_{b}$ is small: one real parameter $\Delta=\Delta_{s}=\Delta_{d}$
Scenario III: MFV with a large $y_{b}$ : one complex parameter $\Delta=\Delta_{s}=\Delta_{d}$

Examples: Scenario I covers the MSSM with generic flavour structure of the soft terms and small tan $\beta$.
Scenario II covers the MSSM with MFV and small $\tan \beta$.
Scenario III covers certain two-Higgs models (but not the MFV-MSSM).

## Results in scenario I:



SM point $\Delta_{d}=1$ disfavoured by $\geq 2.5 \sigma$.
$\phi_{d}^{\Delta}<0$ helps to explain DØ dimuon asymmetry.

Reason for the tension with the SM: $B\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)$
SM prediction $(C L=2 \sigma)$ :

$$
B\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\left(0.763_{-0.097}^{+0.214}\right) \cdot 10^{-4}
$$

Average of several measurements by BaBar and Belle:

$$
B^{\exp }\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(1.68 \pm 0.31) \cdot 10^{-4}
$$

Reason for the tension with the SM: $B\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)$
SM prediction $(C L=2 \sigma)$ :

$$
B\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\left(0.763_{-0.097}^{+0.214}\right) \cdot 10^{-4}
$$

Average of several measurements by BaBar and Belle:

$$
\begin{gathered}
B^{\exp }\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(1.68 \pm 0.31) \cdot 10^{-4} \\
B^{\mathrm{SM}}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\frac{G_{F}^{2} m_{B^{+}} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B^{+}}^{2}}\right)^{2}\left|V_{u b}\right|^{2} f_{B}^{2} \tau_{B^{+}}
\end{gathered}
$$

But with e.g. $f_{B}=210 \mathrm{MeV}$ and $\left|V_{u b}\right|=4.4 \cdot 10^{-3}$ find $B^{\text {SM }}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=1.51 \cdot 10^{-4}$. These parameters comply with the global fit to the UT only, if new physics changes the constraints from $A_{C P}^{\operatorname{mix}}\left(B_{d} \rightarrow J / \psi K_{\text {short }}\right), \Delta m_{d}$ or $\Delta m_{d} / \Delta m_{s}$.

Global fit in the SM:



SM point $\Delta_{s}=1$ disfavoured by $\geq 2.7 \sigma$.
without 2010 CDF/DØ data on $B_{s} \rightarrow J / \psi \phi$

Global fit to UT hinting at $\phi_{d}^{\Delta}<0$ :
Other authors have seen a tension with the SM in the same direction stemming from $\epsilon_{K}$.
Lunghi,Soni; Buras,Guadagnoli

In our fit the tension with $\epsilon_{K}$ is mild, because we use a more conservative error on the hadronic parameter $\widehat{B}_{K}=0.724 \pm 0.004 \pm 0.067$ and because the Rfit method is more conservative.
p-values:
Calculate $\chi^{2} / N_{\text {dof }}$ with and without a hypothesis to find:

| Hypothesis | p -value |
| :--- | :--- |
| $\Delta_{d}=1$ | $2.5 \sigma$ |
| $\Delta_{s}=1$ | $2.7 \sigma$ |
| $\Delta_{d}=\Delta_{s}=1$ | $3.4 \sigma$ |
| $\Delta_{d}=\Delta_{s}$ | $2.1 \sigma$ |

Fit result at 95\%CL:

$$
\phi_{s}^{\Delta}=\left(-51_{-25}^{+32}\right)^{\circ} \quad\left(\text { and } \phi_{s}^{\Delta}=\left(-129_{-27}^{+28}\right)^{\circ}\right)
$$

Compare with the 2010 CDF/DØ result from $B_{S} \rightarrow J / \psi \phi:$
CDF: $\quad \phi_{s}^{\Delta}=\left(-29_{-49}^{+44}\right)^{\circ} \quad$ at $95 \% \mathrm{CL}$
$\mathrm{D} \varnothing: \quad \phi_{s}^{\Delta}=\left(-44_{-51}^{+59}\right)^{\circ} \quad$ at $95 \% \mathrm{CL}$

Naive average: $\phi_{s}^{\text {avg }}=(-36 \pm 35)^{\circ}$ at $95 \% \mathrm{CL}$

Is the result driven by the $\mathrm{D} \varnothing$ dimuon asymmetry?
One can remove $a_{\mathrm{fs}}$ as an input and instead predict it from the global fit:

$$
a_{\mathrm{fs}}=\left(-4.2_{-2.6}^{+2.7}\right) \cdot 10^{-3} \quad \text { at } 2 \sigma
$$

Is the result driven by the $\mathrm{D} \varnothing$ dimuon asymmetry?
One can remove $a_{\mathrm{fs}}$ as an input and instead predict it from the global fit:

$$
a_{\mathrm{fs}}=\left(-4.2_{-2.6}^{+2.7}\right) \cdot 10^{-3} \quad \text { at } 2 \sigma
$$

This is just $1.5 \sigma$ away from the DØ/CDF average

$$
a_{\mathrm{fs}}=(-8.5 \pm 2.8) \cdot 10^{-3}
$$

The fit in scenario II (real $\Delta_{s}=\Delta_{d}$ ) is not better than the SM fit and gives $\Delta=0.907_{-0.067}^{+0.091}$.

Scenario III (complex $\Delta_{s}=\Delta_{d}$ ) fits the data quite well irrespective of whether $B\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)$ is included or not.

| Hypothesis | p -value |
| :--- | :--- |
| $\Delta=1$ | $3.1 \sigma$ |

## Conclusions

- Updated predictions:

$$
\begin{array}{ll} 
& 2\left|\Gamma_{12}^{S}\right|=\Delta \Gamma_{S}^{S M}=(0.086 \pm 0.025) \mathrm{ps}^{-1} \\
\text { and } & -5 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 10^{-3} .
\end{array}
$$

## Conclusions

- Updated predictions:

$$
\begin{array}{ll} 
& 2\left|\Gamma_{12}^{S}\right|=\Delta \Gamma_{s}^{S M}=(0.086 \pm 0.025) \mathrm{ps}^{-1} \\
\text { and } & -5 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 10^{-3} .
\end{array}
$$

- The D $\varnothing$ result for the dimuon asymmetry in $B_{s}$ decays supports the hints for $\phi_{s}<0$ seen in $B_{s} \rightarrow J / \psi \phi$ data. The central value is easier to accomodate if both $a_{\mathrm{fs}}^{s}$ and $a_{\mathrm{fs}}^{d}$ receive negative contributions from new physics.


## Conclusions

- Updated predictions:
and $\quad-5 \cdot 10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}}-1 \leq 10^{-3}$.
- The $\mathrm{D} \varnothing$ result for the dimuon asymmetry in $B_{s}$ decays supports the hints for $\phi_{s}<0$ seen in $B_{s} \rightarrow J / \psi \phi$ data. The central value is easier to accomodate if both $a_{\mathrm{fs}}^{s}$ and $a_{\mathrm{fs}}^{d}$ receive negative contributions from new physics.
- A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_{d}^{\Delta}<0$, driven by $B\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)$ (and possibly $\epsilon_{K}$ ). In a simultaneously global fit to the UT and the $B_{s}-\bar{B}_{s}$ mixing complex a plausible picture of new CP-violating physics emerges.


## Conclusions

- For 40 years theorists have pointed out the sensitivity of meson-antimeson mixing to new physics. We may well start to see this new physics in current data on $B-\bar{B}$ mixing.


## Conclusions

- For 40 years theorists have pointed out the sensitivity of meson-antimeson mixing to new physics. We may well start to see this new physics in current data on $B-\bar{B}$ mixing.
The Standard Model is already falsified from cosmological data and neutrino experiments. LHCb could be the first terrestrial experiment to see imprints of new TeV-scale physics.


A pinch of new physics in $\mathrm{B}-\overline{\mathrm{B}}$ mixing?

