Basics

Conclusions

Lifetimes and mixing parameters of neutral b hadrons

Ulrich Nierste

Karlsruhe Institute of Technology

Federal Ministry of Education and Research

CKM2010, September 2010

in memory of Nicola Cabibbo (10 Apr 1935 – 16 Aug 2010)

May 14, 2010 Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 14, 2010 Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010 The New York Times:

> Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

May 14, 2010 Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010 The New York Times:

> Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

> Joe Lykken, a theorist at Fermilab, said, "So I would not say that this announcement is the equivalent of seeing the face of God, but it might turn out to be the toe of God."

 $B\!-\!\overline{B}\,$ mixing basics

The average B_s width

Global analysis of $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing

Conclusions

$B-\overline{B}$ mixing basics

Consider $B_q - \overline{B}_q$ mixing with q = d or q = s: A meson identified ("tagged") as a B_q at time t = 0 is described by $|B_q(t)\rangle$.

$B-\overline{B}$ mixing basics

Consider $B_q - \overline{B}_q$ mixing with q = d or q = s: A meson identified ("tagged") as a B_q at time t = 0 is described by $|B_q(t)\rangle$.

For *t* > 0:

 $|B_q(t)
angle = \langle B_q|B_q(t)
angle |B_q
angle + \langle \overline{B}_q|B_q(t)
angle |\overline{B}_q
angle + \dots,$

with "..." denoting the states into which $B_q(t)$ can decay.

$B-\overline{B}$ mixing basics

Consider $B_q - \overline{B}_q$ mixing with q = d or q = s: A meson identified ("tagged") as a B_q at time t = 0 is described by $|B_q(t)\rangle$.

For *t* > 0:

 $\ket{B_q(t)} = \langle B_q | B_q(t)
angle \ket{B_q} + \langle \overline{B}_q | B_q(t)
angle \ket{\overline{B}_q} + \dots,$

with "..." denoting the states into which $B_q(t)$ can decay.

Analogously: $|\overline{B}_q(t)\rangle$ is the ket of a meson tagged as a \overline{B}_q at time t = 0.

Schrödinger equation:

$$irac{d}{dt} \left(egin{array}{c} \langle B_q | B_q(t)
angle \ \langle ar{B}_q | B_q(t)
angle \end{array}
ight) \ = \ \left(M^q - irac{\Gamma^q}{2}
ight) \left(egin{array}{c} \langle B_q | B_q(t)
angle \ \langle ar{B}_q | B_q(t)
angle \end{array}
ight)$$

with the 2 × 2 mass and decay matrices $M^q = M^{q\dagger}$ and $\Gamma^q = \Gamma^{q\dagger}$. $\begin{pmatrix} \langle B_q | \bar{B}_q(t) \rangle \\ \langle \bar{B}_q | \bar{B}_q(t) \rangle \end{pmatrix}$ obeys the same Schrödinger equation. Schrödinger equation:

$$irac{d}{dt} \left(egin{array}{c} \langle B_q | B_q(t)
angle \ \langle ar{B}_q | B_q(t)
angle \end{array}
ight) \ = \ \left(M^q - irac{\Gamma^q}{2}
ight) \left(egin{array}{c} \langle B_q | B_q(t)
angle \ \langle ar{B}_q | B_q(t)
angle \end{array}
ight)$$

with the 2 × 2 mass and decay matrices $M^q = M^{q\dagger}$ and $\Gamma^q = \Gamma^{q\dagger}$. $\begin{pmatrix} \langle B_q | \bar{B}_q(t) \rangle \\ \langle \bar{B}_q | \bar{B}_q(t) \rangle \end{pmatrix}$ obeys the same Schrödinger equation.

3 physical quantities in $B_q - \overline{B}_q$ mixing:

$$\left| M_{12}^{q} \right|, \quad \left| \Gamma_{12}^{q} \right|, \quad \phi_{q} \equiv \arg\left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}} \right)$$

Diagonalise $M^q - i \frac{\Gamma^q}{2}$ to find the two mass eigenstates:

Lighter eigenstate: $|B_L^q\rangle = p|B_q\rangle + q|\overline{B}_q\rangle$. Heavier eigenstate: $|B_H^q\rangle = p|B_q\rangle - q|\overline{B}_q\rangle$

with masses $M_{L,H}^q$ and widths $\Gamma_{L,H}^q$. Further $|p|^2 + |q|^2 = 1$.

Diagonalise $M^q - i \frac{\Gamma^q}{2}$ to find the two mass eigenstates:

Lighter eigenstate: $|B_L^q\rangle = \rho|B_q\rangle + q|\overline{B}_q\rangle$. Heavier eigenstate: $|B_H^q\rangle = \rho|B_q\rangle - q|\overline{B}_q\rangle$

with masses
$$M_{L,H}^q$$
 and widths $\Gamma_{L,H}^q$.
Further $|p|^2 + |q|^2 = 1$.

Relation of Δm_q and $\Delta \Gamma_q$ to $|M_{12}^q|$, $|\Gamma_{12}^q|$ and ϕ_q :

$$\Delta m_q = M_H^q - M_L^q \simeq 2|M_{12}^q|,$$

$$\Delta \Gamma_q = \Gamma_L^q - \Gamma_H^q \simeq 2|\Gamma_{12}^q|\cos\phi_q$$

In the Standard Model $\phi_d \approx -5^\circ$ and $\phi_d \approx 0.2^\circ$, so that

$$\Delta\Gamma_q^{\rm SM}\simeq 2|\Gamma_{12}^q|$$

 M_{12}^q stems from the dispersive (real) part of the box diagram, internal *t*. Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal *c*, *u*.

$B-\overline{B}$ mixing and new physics

New physics cannot affect Γ_{12}^{s} , which stems from CKM-favoured tree-level decays.

New physics can barely affect Γ_{12}^d , which stems from singly Cabibbo-suppressed tree-level decays.

$B-\overline{B}$ mixing and new physics

New physics cannot affect Γ_{12}^{s} , which stems from CKM-favoured tree-level decays.

New physics can barely affect Γ_{12}^d , which stems from singly Cabibbo-suppressed tree-level decays.

 M_{12}^q is very sensitive to virtual effects of new heavy particles. A priori new physics at the TeV scale typically comes with $|M_{12}^q| \gg |M_{12}^{\text{SM},q}|$ ("new-physics flavour problem").

 \Rightarrow Substantial changes in $|M_{12}^q|$ and ϕ_q are possible.

Average width:
$$\Gamma_q = \frac{\Gamma_L^q + \Gamma_H^q}{2}$$

SM predictions:

In the ratio $|\Gamma_{12}^q|/|M_{12}^{SM,q}|$ hadronic uncertainties cancel to a large extent.

$$\frac{|\Gamma_{12}^d|}{|M_{12}^{d,\text{SM}}|} = \frac{2|\Gamma_{12}^d|}{|\Delta m_d^{\text{SM}}|} = (53^{+11}_{-13}) \cdot 10^{-4}$$
$$\Delta m_d^{\text{exp}} = 0.51 \,\text{ps}^{-1} \qquad \Rightarrow \qquad \frac{2|\Gamma_{12}^d|}{|\Gamma_d|} \bigg|_{\text{SM}} = (41^{+9}_{-10}) \cdot 10^{-4}$$

Lenz, UN 2006

Average width:
$$\Gamma_q = \frac{\Gamma_L^q + \Gamma_H^q}{2}$$

SM predictions:

In the ratio $|\Gamma_{12}^q|/|M_{12}^{SM,q}|$ hadronic uncertainties cancel to a large extent.

$$\frac{|\Gamma_{12}^d|}{|M_{12}^{d,\text{SM}}|} = \frac{2|\Gamma_{12}^d|}{|\Delta m_d^{\text{SM}}|} = (53^{+11}_{-13}) \cdot 10^{-4}$$
$$\Delta m_d^{\text{exp}} = 0.51 \,\text{ps}^{-1} \qquad \Rightarrow \qquad \frac{2|\Gamma_{12}^d|}{|\Gamma_d|} \bigg|_{\text{SM}} = (41^{+9}_{-10}) \cdot 10^{-4}$$

Lenz, UN 2006

$$\Delta \Gamma_d = 2|\Gamma_{12}^d|\cos(\phi_d) \geq 2|\Gamma_{12}^d|0.94$$

because we know from global fits to the unitarity triangle that $-20^{\circ} \le \phi_d \le 3^{\circ}$ at 3σ CL.

In the B_s system $\Delta\Gamma_s$ is found together with ϕ_s from an angular analysis of $B_s \rightarrow J/\psi\phi$ data. The calculated value of $|\Gamma_{12}^s|$ defines the physical "yellow band" in the $(\Delta\Gamma_s, \phi_s)$ plane.

$$2|\Gamma_{12}^{s}| = (0.096 \pm 0.022) \left[\frac{f_{B_{s}}\sqrt{B}}{221 \text{ MeV}}\right]^{2} \text{ ps}^{-1}$$

Lenz, UN 2006

In the B_s system $\Delta\Gamma_s$ is found together with ϕ_s from an angular analysis of $B_s \rightarrow J/\psi\phi$ data. The calculated value of $|\Gamma_{12}^s|$ defines the physical "yellow band" in the $(\Delta\Gamma_s, \phi_s)$ plane.

$$2|\Gamma_{12}^{s}| = (0.096 \pm 0.022) \left[\frac{f_{B_{s}}\sqrt{B}}{221 \text{ MeV}}\right]^{2} \text{ ps}^{-1}$$

Lenz, UN 2006

Update to the 2010 lattice world average $f_{B_s}\sqrt{B} = 209 \pm 18$ MeV:

$$2|\Gamma_{12}^{s}| = \Delta\Gamma_{s}^{SM} = (0.086 \pm 0.025) \,\text{ps}^{-1}$$
$$\Rightarrow \qquad \frac{\Delta\Gamma_{s}^{SM}}{\Gamma_{s}} = 0.13 \pm 0.04$$

Width difference among the CP eigenstates $|B_{s,CP\pm}\rangle = \frac{|B_s\rangle \mp |\overline{B}_s\rangle}{\sqrt{2}}$:

 $\Delta\Gamma_{\rm CP} = 2|\Gamma_{12}|$

unaffected by new physics!

Width difference among the CP eigenstates $|B_{s,CP\pm}\rangle = \frac{|B_s\rangle \mp |\overline{B}_s\rangle}{\sqrt{2}}$:

 $\Delta \Gamma_{\rm CP} = 2 |\Gamma_{12}|$

unaffected by new physics!

In the simultaneous limits of $N_c = \infty$, $m_c \to \infty$ and $m_b - 2m_c \to 0$ one can show

$$2 \operatorname{Br}({}^{(\overline{B}_{S})}_{S} \to D_{S}^{(*)+} D_{S}^{(*)-}) = \frac{\Delta \Gamma_{\rm CP}}{\Gamma_{S}} \left[1 + \mathcal{O}\left(\frac{\Delta \Gamma}{\Gamma_{S}}\right)\right]$$

Aleksan et al. 1993

Corrections of order 100% cannot be ruled out.

BELLE (arXiv:1005.5177) finds from $Br(\overline{B}_{s}) \rightarrow D_{s}^{(*)+}D_{s}^{(*)-}$)

$$\frac{\Delta\Gamma_{CP}}{\Gamma_{s}} = 0.147^{+0.036}_{-0.030} \Big|_{stat} \frac{+0.044}{-0.042} \Big|_{sys}$$

central value right on top of Lenz, UN 2006 prediction.

BELLE (arXiv:1005.5177) finds from $Br(\overline{B}_{s}) \rightarrow D_{s}^{(*)+}D_{s}^{(*)-}$)

$$\frac{\Delta\Gamma_{CP}}{\Gamma_{s}} = 0.147^{+0.036}_{-0.030}\Big|_{stat} \stackrel{+0.044}{-0.042}\Big|_{sys}$$

central value right on top of Lenz, UN 2006 prediction.

DØ (Note 6093-CONF of July 2010) finds:

$$\frac{\Delta\Gamma_{CP}}{\Gamma_s}=0.072\pm0.030$$

BELLE (arXiv:1005.5177) finds from $Br(\overline{B}_{s}) \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}$)

$$\frac{\Delta\Gamma_{CP}}{\Gamma_{s}} = 0.147^{+0.036}_{-0.030}\Big|_{stat} \stackrel{+0.044}{-0.042}\Big|_{sys}$$

central value right on top of Lenz, UN 2006 prediction.

DØ (Note 6093-CONF of July 2010) finds:

$$\frac{\Delta\Gamma_{CP}}{\Gamma_s}=0.072\pm0.030$$

Checks: In the limit $N_c = \infty$, $m_c \to \infty$ and $m_b - 2m_c \to 0...$

• ... the CP-odd eigenstate does not contribute to $(\overline{B}_{s}^{}) \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}$. The lifetime measured in any of the contributing modes must therefore be $1/\Gamma_{l}^{s}!$

BELLE (arXiv:1005.5177) finds from $Br(\overline{B}_{s}) \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}$)

$$\frac{\Delta\Gamma_{CP}}{\Gamma_{s}} = 0.147^{+0.036}_{-0.030}\Big|_{stat} \stackrel{+0.044}{-0.042}\Big|_{sys}$$

central value right on top of Lenz, UN 2006 prediction.

DØ (Note 6093-CONF of July 2010) finds:

$$\frac{\Delta\Gamma_{CP}}{\Gamma_s}=0.072\pm0.030$$

Checks: In the limit $N_c = \infty$, $m_c \to \infty$ and $m_b - 2m_c \to 0...$

- ... the CP-odd eigenstate does not contribute to $(\overline{B}_{s}^{}) \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}$. The lifetime measured in any of the contributing modes must therefore be $1/\Gamma_{l}^{s}!$
- ... no multi-body ccss final states occur.

Operators:

Wilson Coefficients $|C_{1,2}| \gg |C_{3,...8}|$.

The left diagram gives practically the same result for B_s and B_d . The right diagram comes with small penguin coefficients $C_{3...6}$.

More small diagrams contributing to τ_{B_s} :

The prediction of τ_{B_s}/τ_{B_d} involves four hadronic matrix element parametrised by $f_B^2 B_1$, $f_B^2 B_2$, $f_B^2 \epsilon_1$ and $f_B^2 \epsilon_2$.

Neubert, Sachrajda 1996

1997 prediction including penguin effects:

$$\frac{\tau(B_s)}{\tau(B_d)} - 1 = (-1.2 \pm 10.0) \cdot 10^{-3} \cdot \left(\frac{f_{B_s}}{190 \,\mathrm{MeV}}\right)^2$$

Keum, UN 1997

S

The prediction of τ_{B_s}/τ_{B_d} involves four hadronic matrix element parametrised by $f_B^2 B_1$, $f_B^2 B_2$, $f_B^2 \epsilon_1$ and $f_B^2 \epsilon_2$.

Neubert, Sachrajda 1996

1997 prediction including penguin effects:

$$\frac{\tau(B_s)}{\tau(B_d)} - 1 = (-1.2 \pm 10.0) \cdot 10^{-3} \cdot \left(\frac{f_{B_s}}{190 \,\mathrm{MeV}}\right)^2$$

Keum, UN 1997

With 2001 quenched lattice values (hep-ph/0110124) for the bag parameters and $f_{B_s} = 228 \pm 20 \text{ MeV}$,

 $f_{B_s}/f_{B_d} = 1.199 \pm 0.031$ find

$$-5 \cdot 10^{-3} \le rac{ au_{B_s}}{ au_{B_d}} - 1 \le 10^{-3}$$

HFAG 2010: $\frac{\tau_{B_s}}{\tau_{B_d}} - 1 = -0.035 \pm 0.017.$ This is 1.8 σ away from $-5 \cdot 10^{-3}$. The prediction of τ_{B_s}/τ_{B_d} involves four hadronic matrix element parametrised by $f_B^2 B_1$, $f_B^2 B_2$, $f_B^2 \epsilon_1$ and $f_B^2 \epsilon_2$.

Neubert,Sachrajda 1996

1997 prediction including penguin effects:

$$\frac{\tau(B_s)}{\tau(B_d)} - 1 = (-1.2 \pm 10.0) \cdot 10^{-3} \cdot \left(\frac{f_{B_s}}{190 \,\mathrm{MeV}}\right)^2$$

Keum, UN 1997

With 2001 quenched lattice values (hep-ph/0110124) for the bag parameters and $f_{B_s} = 228 \pm 20 \text{ MeV}$,

 $f_{B_s}/f_{B_d} = 1.199 \pm 0.031$ find

$$-5 \cdot 10^{-3} \le rac{ au_{B_s}}{ au_{B_d}} - 1 \le 10^{-3}$$

HFAG 2010: $\frac{\tau_{B_s}}{\tau_{B_d}} - 1 = -0.035 \pm 0.017$. This is 1.8σ away from $-5 \cdot 10^{-3}$. The discrepancy can be slightly alleviated with a positive new physics contribution to C_4 .

Global analysis of $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing

Based on work with A. Lenz and the CKMfitter Group(J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold,H. Lacker, S. Monteil, V. Niess)arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters Δ_s and Δ_d :

$$\Delta_q \ \equiv \ rac{M^q_{12}}{M^{q,{
m SM}}_{12}}, \ \Delta_q \ \equiv \ |\Delta_q| e^{i \phi^\Delta_q}.$$

CP asymmetries in flavour-specific decays (semileptonic CP asymmetries):

$$\begin{aligned} a_{\rm fs}^{d} &= \frac{|\Gamma_{12}^{d}|}{|M_{12}^{d}|} \sin \phi_{d} = \frac{|\Gamma_{12}^{d}|}{|M_{12}^{\rm SM,d}|} \cdot \frac{\sin \phi_{d}}{|\Delta_{d}|} = \left(5.26^{+1.15}_{-1.28}\right) \cdot 10^{-3} \cdot \frac{\sin \phi_{d}}{|\Delta_{d}|} \\ a_{\rm fs}^{s} &= \frac{|\Gamma_{12}^{s}|}{|M_{12}^{s}|} \sin \phi_{s} = \frac{|\Gamma_{12}^{s}|}{|M_{12}^{\rm SM,s}|} \cdot \frac{\sin \phi_{s}}{|\Delta_{s}|} = (4.97 \pm 0.94) \cdot 10^{-3} \cdot \frac{\sin \phi_{s}}{|\Delta_{s}|} \\ A. \, \text{Lenz, UN, 2006} \end{aligned}$$

Why a simultaneous fit to $B_d - \overline{B}_d$ mixing and $B_s - \overline{B}_s$ mixing?

Why a simultaneous fit to $B_d - \overline{B}_d$ mixing and $B_s - \overline{B}_s$ mixing?

Two connections: (i) The DØ dimuon asymmetry result

 $a_{\rm fs} = (-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}$

involves a mixture of B_d and B_s mesons with

 $a_{
m fs} = (0.506 \pm 0.043)a_{
m fs}^d + (0.494 \pm 0.043)a_{
m fs}^s$

(ii) The global fit to the unitarity triangle involves $\Delta m_d / \Delta m_s$ as an important constraint.

Why a simultaneous fit to $B_d - \overline{B}_d$ mixing and $B_s - \overline{B}_s$ mixing?

Two connections: (i) The DØ dimuon asymmetry result

 $a_{\rm fs} = (-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}$

involves a mixture of B_d and B_s mesons with

 $a_{
m fs} = (0.506 \pm 0.043)a_{
m fs}^d + (0.494 \pm 0.043)a_{
m fs}^s$

(ii) The global fit to the unitarity triangle involves $\Delta m_d / \Delta m_s$ as an important constraint.

Note: in the presence of new physics $A_{CP}^{\text{mix}}(B_d \rightarrow J/\psi K_{\text{short}})$ measures $\sin(2\beta + \phi_d^{\Delta})$ rather than $\sin(2\beta)$.

Three scenarios:

Scenario I: arbitrary complex parameters Δ_s and Δ_d

Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and y_b is small: one real parameter $\Delta = \Delta_s = \Delta_d$

Scenario III: MFV with a large y_b : one complex parameter $\Delta = \Delta_s = \Delta_d$

Three scenarios:

Scenario I: arbitrary complex parameters Δ_s and Δ_d

Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and y_b is small: one real parameter $\Delta = \Delta_s = \Delta_d$

Scenario III: MFV with a large y_b : one complex parameter $\Delta = \Delta_s = \Delta_d$

Examples: Scenario I covers the MSSM with generic flavour structure of the soft terms and small $\tan \beta$. Scenario II covers the MSSM with MFV and small $\tan \beta$.

Scenario III covers certain two-Higgs models (but not the MFV-MSSM).

Results in scenario I:

SM point $\Delta_d = 1$ disfavoured by $\geq 2.5\sigma$.

 ϕ_d^{Δ} < 0 helps to explain DØ dimuon asymmetry.

Reason for the tension with the SM: $B(B^+ \rightarrow \tau^+ \nu_{\tau})$

SM prediction (CL= 2σ):

$${\it B}({\it B}^+ o au^+
u_ au) = \left(0.763^{+0.214}_{-0.097}
ight) \cdot 10^{-4}$$

Average of several measurements by BaBar and Belle:

$$B^{\exp}(B^+ o au^+
u_ au) = (1.68 \pm 0.31) \cdot 10^{-4}$$

Reason for the tension with the SM: $B(B^+ \rightarrow \tau^+ \nu_{\tau})$

SM prediction (CL= 2σ):

$${\it B}({\it B}^+ o au^+
u_ au) = \left(0.763^{+0.214}_{-0.097}
ight) \cdot 10^{-4}$$

Average of several measurements by BaBar and Belle:

$$B^{\exp}(B^+ o au^+
u_{ au}) = (1.68 \pm 0.31) \cdot 10^{-4}$$

$$B^{
m SM}(B^+ o au^+
u_ au) = rac{G_F^2 m_{B^+} m_ au^2}{8\pi} \left(1 - rac{m_ au^2}{m_{B^+}^2}
ight)^2 |V_{ub}|^2 f_B^2 au_{B^+}.$$

But with e.g. $f_B = 210 \text{ MeV}$ and $|V_{ub}| = 4.4 \cdot 10^{-3}$ find $B^{\text{SM}}(B^+ \to \tau^+ \nu_{\tau}) = 1.51 \cdot 10^{-4}$. These parameters comply with the global fit to the UT only, if new physics changes the constraints from $A_{CP}^{\text{mix}}(B_d \to J/\psi K_{\text{short}})$, Δm_d or $\Delta m_d/\Delta m_s$.

Global fit in the SM:

without 2010 CDF/DØ data on $B_s \rightarrow J/\psi \phi$

Global fit to UT hinting at $\phi_d^{\Delta} < 0$:

Other authors have seen a tension with the SM in the same direction stemming from ϵ_{K} .

Lunghi, Soni; Buras, Guadagnoli

In our fit the tension with ϵ_{K} is mild, because we use a more conservative error on the hadronic parameter $\widehat{B}_{K} = 0.724 \pm 0.004 \pm 0.067$ and because the Rfit method is more conservative.

p-values: Calculate χ^2/N_{dof} with and without a hypothesis to find:

Hypothesis	p-value
$\Delta_d = 1$	2.5 σ
$\Delta_{s}=1$	2.7 σ
$\Delta_d = \Delta_s = 1$	3.4 σ
$\Delta_d = \Delta_s$	2.1 σ

Fit result at 95%CL:

$$\phi^{\Delta}_{s}=(-51^{+32}_{-25})^{\circ}$$
 (and $\phi^{\Delta}_{s}=(-129^{+28}_{-27})^{\circ}$)

Compare with the 2010 CDF/DØ result from $B_s \rightarrow J/\psi\phi$:

CDF: $\phi_s^{\Delta} = (-29^{+44}_{-49})^{\circ}$ at 95%CL DØ: $\phi_s^{\Delta} = (-44^{+59}_{-51})^{\circ}$ at 95%CL

Naive average: $\phi_s^{avg} = (-36 \pm 35)^\circ$ at 95%CL

Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{\rm fs} = \left(-4.2^{+2.7}_{-2.6}
ight) \cdot 10^{-3}$$
 at 2σ .

Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{\rm fs} = \left(-4.2^{+2.7}_{-2.6}
ight) \cdot 10^{-3}$$
 at 2σ .

This is just 1.5σ away from the DØ/CDF average

$$a_{\rm fs} = (-8.5 \pm 2.8) \cdot 10^{-3}.$$

The fit in scenario II (real $\Delta_s = \Delta_d$) is not better than the SM fit and gives $\Delta = 0.907^{+0.091}_{-0.067}$.

Scenario III (complex $\Delta_s = \Delta_d$) fits the data quite well irrespective of whether $B(B^+ \to \tau^+ \nu_{\tau})$ is included or not.

Hypothesis	p-value	
$\Delta = 1$	3.1 σ	

Basics	$ au_{B_{\mathcal{S}}}$	Global analysis	Conclusions
Conclusions			

• Updated predictions:

and
$$2|\Gamma_{12}^{s}| = \Delta\Gamma_{s}^{SM} = (0.086 \pm 0.025) \, \text{ps}^{-1}$$

 $-5 \cdot 10^{-3} \le \frac{\tau_{B_{s}}}{\tau_{B_{d}}} - 1 \le 10^{-3}.$

Basics	$ au_{B_S}$	Global analysis	Conclusions
	Со	nclusions	

Updated predictions:

and
$$\begin{split} 2|\Gamma_{12}^{s}| &= \Delta\Gamma_{s}^{\text{SM}} = (0.086 \pm 0.025)\,\text{ps}^{-1}\\ -5\cdot 10^{-3} &\leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}} - 1 \leq 10^{-3}. \end{split}$$

• The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \rightarrow J/\psi\phi$ data. The central value is easier to accomodate if both $a_{\rm fs}^s$ and $a_{\rm fs}^d$ receive negative contributions from new physics.

Basics	$ au_{B_S}$	Global analysis	Conclusions	
Conclusions				

Updated predictions:

$$\begin{aligned} & 2|\Gamma_{12}^{s}| = \Delta\Gamma_{s}^{\text{SM}} = (0.086 \pm 0.025)\,\text{ps}^{-1} \\ & \text{and} \qquad -5\cdot10^{-3} \leq \frac{\tau_{B_{s}}}{\tau_{B_{d}}} - 1 \leq 10^{-3}. \end{aligned}$$

- The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \rightarrow J/\psi\phi$ data. The central value is easier to accomodate if both $a_{\rm fs}^s$ and $a_{\rm fs}^d$ receive negative contributions from new physics.
- A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_d^{\Delta} < 0$, driven by $B(B^+ \to \tau^+ \nu_{\tau})$ (and possibly ϵ_{K}). In a simultaneously global fit to the UT and the $B_s \overline{B}_s$ mixing complex a plausible picture of new CP-violating physics emerges.

• For 40 years theorists have pointed out the sensitivity of meson-antimeson mixing to new physics. We may well start to see this new physics in current data on $B-\overline{B}$ mixing.

 For 40 years theorists have pointed out the sensitivity of meson-antimeson mixing to new physics. We may well start to see this new physics in current data on B-B mixing.

The Standard Model is already falsified from cosmological data and neutrino experiments. LHCb could be the first terrestrial experiment to see imprints of new TeV-scale physics.

A pinch of new physics in $B-\overline{B}$ mixing?