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Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010
The New York Times:

Physicists at the Fermi National Accelerator Laboratory
are reporting that they have discovered a new clue that
could help unravel one of the biggest mysteries of cos-
mology: why the universe is composed of matter and not
its evil-twin opposite, antimatter.

Joe Lykken, a theorist at Fermilab, said, “So I would not
say that this announcement is the equivalent of seeing the
face of God, but it might turn out to be the toe of God.”
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B−B mixing basics

Consider Bq −Bq mixing with q = d or
q = s:
A meson identified (“tagged”) as a Bq at
time t = 0 is described by |Bq(t)〉.
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For t > 0:

|Bq(t)〉 = 〈Bq|Bq(t)〉 |Bq〉 + 〈Bq|Bq(t)〉 |Bq〉+ . . . ,

with “. . . ” denoting the states into which Bq(t) can decay.
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For t > 0:

|Bq(t)〉 = 〈Bq|Bq(t)〉 |Bq〉 + 〈Bq|Bq(t)〉 |Bq〉+ . . . ,

with “. . . ” denoting the states into which Bq(t) can decay.

Analogously: |Bq(t)〉 is the ket of a meson tagged as a Bq at
time t = 0.
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Schrödinger equation:

i
d
dt

(
〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)
=

(
Mq − i

Γq

2

)( 〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)

with the 2 × 2 mass and decay matrices Mq = Mq† and
Γq = Γq†.(

〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)
obeys the same Schrödinger equation.
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i
d
dt

(
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)
=

(
Mq − i

Γq

2

)( 〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)

with the 2 × 2 mass and decay matrices Mq = Mq† and
Γq = Γq†.(

〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)
obeys the same Schrödinger equation.

3 physical quantities in Bq−Bq mixing:

∣∣Mq
12

∣∣ ,
∣∣Γq

12

∣∣ , φq ≡ arg

(
−Mq

12

Γq
12

)
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Diagonalise Mq − i Γq

2 to find the two mass eigenstates:

Lighter eigenstate: |Bq
L 〉 = p|Bq〉+ q|Bq〉.

Heavier eigenstate: |Bq
H〉 = p|Bq〉 − q|Bq〉

with masses Mq
L,H and widths Γq

L,H .

Further |p|2 + |q|2 = 1.
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Diagonalise Mq − i Γq

2 to find the two mass eigenstates:

Lighter eigenstate: |Bq
L 〉 = p|Bq〉+ q|Bq〉.

Heavier eigenstate: |Bq
H〉 = p|Bq〉 − q|Bq〉

with masses Mq
L,H and widths Γq

L,H .

Further |p|2 + |q|2 = 1.

Relation of ∆mq and ∆Γq to |Mq
12|, |Γ

q
12| and φq:

∆mq = Mq
H − Mq

L ≃ 2|Mq
12|,

∆Γq = Γq
L − Γq

H ≃ 2|Γq
12| cosφq

In the Standard Model φd ≈ −5◦ and φd ≈ 0.2◦, so that

∆ΓSM
q ≃ 2|Γq

12|
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Mq
12 stems from the dispersive (real)

part of the box diagram, internal t .
Γq

12 stems from the absorpive (imag-
inary) part of the box diagram, inter-
nal c, u.
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B−B mixing and new physics

New physics cannot affect
Γs

12, which stems from CKM-
favoured tree-level decays.

New physics can barely affect
Γd

12, which stems from singly
Cabibbo-suppressed tree-level
decays.
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B−B mixing and new physics

New physics cannot affect
Γs

12, which stems from CKM-
favoured tree-level decays.

New physics can barely affect
Γd

12, which stems from singly
Cabibbo-suppressed tree-level
decays.
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Mq
12 is very sensitive to virtual effects of new heavy particles. A

priori new physics at the TeV scale typically comes with
|Mq

12| ≫ |MSM,q
12 | (“new-physics flavour problem”).

⇒ Substantial changes in |Mq
12| and φq are possible.
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Average width: Γq =
Γq

L + Γq
H

2

SM predictions:

In the ratio |Γq
12|/|M

SM,q
12 | hadronic uncertainties cancel to a

large extent.

|Γd
12|

|Md ,SM
12 |

=
2|Γd

12|
|∆mSM

d | =
(

53
+11
−13

)
· 10−4

∆mexp
d = 0.51 ps−1 ⇒ 2|Γd

12|
Γd

∣∣∣∣∣
SM

=
(

41
+9
−10

)
· 10−4

Lenz, UN 2006
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+9
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Lenz, UN 2006

∆Γd = 2|Γd
12| cos(φd) ≥ 2|Γd

12|0.94

because we know from global fits to the unitarity triangle that
−20◦ ≤ φd ≤ 3◦ at 3σ CL.
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In the Bs system ∆Γs is found together with φs from an angular
analysis of Bs → J/ψφ data. The calculated value of |Γs

12|
defines the physical “yellow band” in the (∆Γs, φs) plane.

2|Γs
12| = (0.096 ± 0.022)

[
fBs

√
B

221 MeV

]2

ps−1

Lenz, UN 2006
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In the Bs system ∆Γs is found together with φs from an angular
analysis of Bs → J/ψφ data. The calculated value of |Γs

12|
defines the physical “yellow band” in the (∆Γs, φs) plane.

2|Γs
12| = (0.096 ± 0.022)

[
fBs

√
B

221 MeV

]2

ps−1

Lenz, UN 2006

Update to the 2010 lattice world average
fBs

√
B = 209 ± 18 MeV:

2|Γs
12| = ∆ΓSM

s = (0.086 ± 0.025) ps−1

⇒ ∆ΓSM
s

Γs
= 0.13 ± 0.04
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Width difference among the CP eigenstates

|Bs,CP±〉 =
|Bs〉 ∓ |Bs〉√

2
:

∆ΓCP = 2|Γ12|
unaffected by new physics!
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Width difference among the CP eigenstates

|Bs,CP±〉 =
|Bs〉 ∓ |Bs〉√

2
:

∆ΓCP = 2|Γ12|
unaffected by new physics!

In the simultaneous limits of Nc = ∞, mc → ∞ and
mb − 2mc → 0 one can show

2 Br(
( )

Bs → D(∗)
s

+D(∗)
s

−) =
∆ΓCP

Γs

[
1 +O

(
∆Γ

Γs

)]

Aleksan et al. 1993
Corrections of order 100% cannot be ruled out.
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BELLE (arXiv:1005.5177) finds from Br(
( )

Bs → D(∗)
s

+D(∗)
s

−)

∆ΓCP

Γs
= 0.147

+0.036
−0.030

∣∣∣
stat

+0.044
−0.042

∣∣∣
syst

central value right on top of Lenz, UN 2006 prediction.
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−. The lifetime measured in any of the
contributing modes must therefore be 1/Γs

L!
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BELLE (arXiv:1005.5177) finds from Br(
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s

+D(∗)
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−)

∆ΓCP

Γs
= 0.147

+0.036
−0.030

∣∣∣
stat

+0.044
−0.042

∣∣∣
syst

central value right on top of Lenz, UN 2006 prediction.

DØ (Note 6093-CONF of July 2010) finds:

∆ΓCP

Γs
= 0.072 ± 0.030

Checks: In the limit Nc = ∞, mc → ∞ and mb − 2mc → 0. . .

• . . . the CP-odd eigenstate does not contribute to
( )

Bs → D(∗)
s

+D(∗)
s

−. The lifetime measured in any of the
contributing modes must therefore be 1/Γs

L!

• . . . no multi-body ccss final states occur.
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The average Bs width

Define

τBs ≡
1
ΓBs

.

Discuss
τBs

τBd

.

Operators:

8

b s

u -u

Qu
1,2

b s

c -c

Qc
1,2

b s

q -q

Q
3-6

b s

Q
8

b s

Q

Wilson Coefficients |C1,2| ≫ |C3,...8|.
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Weak annihilation

contributes to τBd
,τBs : contributes only to τBs :

d,s

b

d,s

b

u,c

c

Q1,2 Q1,2

s

b

s

b

c

c

Q3-6 Q1,2

The left diagram gives practically the same result for Bs and Bd .
The right diagram comes with small penguin coefficients C3...6.
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More small diagrams contributing to τBs :

s

b

s

b

c

c
Q8

Q1,2

s

b

s

b

c

c

Q1,2 Q1,2
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The prediction of τBs/τBd
involves four hadronic matrix element

parametrised by f 2
BB1, f 2

BB2, f 2
Bǫ1 and f 2

Bǫ2.
Neubert,Sachrajda 1996

1997 prediction including penguin effects:

τ(Bs)

τ(Bd)
− 1 = (−1.2 ± 10.0) · 10−3 ·

(
fBs

190 MeV

)2

Keum,UN 1997
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With 2001 quenched lattice values (hep-ph/0110124) for the
bag parameters and fBs = 228 ± 20 MeV,
fBs/fBd

= 1.199 ± 0.031 find

−5 · 10−3 ≤ τBs

τBd

− 1 ≤ 10−3

HFAG 2010:
τBs

τBd

− 1 = −0.035 ± 0.017.

This is 1.8σ away from −5 · 10−3.
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The prediction of τBs/τBd
involves four hadronic matrix element

parametrised by f 2
BB1, f 2

BB2, f 2
Bǫ1 and f 2

Bǫ2.
Neubert,Sachrajda 1996

1997 prediction including penguin effects:

τ(Bs)

τ(Bd)
− 1 = (−1.2 ± 10.0) · 10−3 ·

(
fBs

190 MeV

)2

Keum,UN 1997

With 2001 quenched lattice values (hep-ph/0110124) for the
bag parameters and fBs = 228 ± 20 MeV,
fBs/fBd

= 1.199 ± 0.031 find

−5 · 10−3 ≤ τBs

τBd

− 1 ≤ 10−3

HFAG 2010:
τBs

τBd

− 1 = −0.035 ± 0.017.

This is 1.8σ away from −5 · 10−3.
The discrepancy can be slightly alleviated with a positive new
physics contribution to C4.
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Global analysis of Bs−Bs mixing and Bd−Bd mixing

Based on work with A. Lenz and the CKMfitter Group
(J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold,
H. Lacker, S. Monteil, V. Niess) arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic
errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein
parameters and to the new physics parameters ∆s and ∆d :

∆q ≡ Mq
12

Mq,SM
12

, ∆q ≡ |∆q|eiφ∆
q .
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CP asymmetries in flavour-specific decays (semileptonic CP
asymmetries):

ad
fs =

|Γd
12|

|Md
12|

sinφd =
|Γd

12|
|MSM,d

12 |
· sinφd

|∆d |
=
(

5.26
+1.15
−1.28

)
·10−3 · sinφd

|∆d |

as
fs =

|Γs
12|

|Ms
12|

sinφs =
|Γs

12|
|MSM,s

12 |
· sinφs

|∆s|
= (4.97 ± 0.94)·10−3 · sinφs

|∆s|
A. Lenz, UN, 2006
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Why a simultaneous fit to Bd−Bd mixing and Bs−Bs mixing?

Two connections:
(i) The DØ dimuon asymmetry result

afs = (−9.57 ± 2.51 ± 1.46) · 10−3

involves a mixture of Bd and Bs mesons with

afs = (0.506 ± 0.043)ad
fs + (0.494 ± 0.043)as

fs

(ii) The global fit to the unitarity triangle involves ∆md/∆ms as
an important constraint.
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Why a simultaneous fit to Bd−Bd mixing and Bs−Bs mixing?

Two connections:
(i) The DØ dimuon asymmetry result

afs = (−9.57 ± 2.51 ± 1.46) · 10−3

involves a mixture of Bd and Bs mesons with

afs = (0.506 ± 0.043)ad
fs + (0.494 ± 0.043)as

fs

(ii) The global fit to the unitarity triangle involves ∆md/∆ms as
an important constraint.

Note: in the presence of new physics Amix
CP (Bd → J/ψKshort)

measures sin(2β + φ∆d ) rather than sin(2β).
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Three scenarios:
Scenario I: arbitrary complex parameters ∆s and ∆d

Scenario II: new physics is minimally flavour violating (MFV)
(meaning that all flavour violation stems from the
Yukawa sector) and yb is small:
one real parameter ∆ = ∆s = ∆d

Scenario III: MFV with a large yb: one complex parameter
∆ = ∆s = ∆d



Basics τBs Global analysis Conclusions

Three scenarios:
Scenario I: arbitrary complex parameters ∆s and ∆d

Scenario II: new physics is minimally flavour violating (MFV)
(meaning that all flavour violation stems from the
Yukawa sector) and yb is small:
one real parameter ∆ = ∆s = ∆d

Scenario III: MFV with a large yb: one complex parameter
∆ = ∆s = ∆d

Examples: Scenario I covers the MSSM with generic flavour
structure of the soft terms and small tanβ.
Scenario II covers the MSSM with MFV and small
tanβ.
Scenario III covers certain two-Higgs models (but
not the MFV-MSSM).
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Results in scenario I:

α

)
s

(B
SL

) & A
d

(BSL & ASLA

sm∆ & dm∆

>0β; cos 2βsin 2

SM point

d∆Re 
-2 -1 0 1 2 3

d∆
Im

 

-2

-1

0

1

2

excluded area has CL > 0.68

FPCP 10

CKM
f i t t e r  mixing dB - 

d
 New Physics in B

SM point ∆d = 1 dis-
favoured by ≥ 2.5σ.

φ∆d < 0 helps to
explain DØ dimuon
asymmetry.
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Reason for the tension with the SM: B(B+ → τ+ντ )

SM prediction (CL= 2σ):

B(B+ → τ+ντ ) =
(

0.763
+0.214
−0.097

)
· 10−4

Average of several measurements by BaBar and Belle:

Bexp(B+ → τ+ντ ) = (1.68 ± 0.31) · 10−4
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Reason for the tension with the SM: B(B+ → τ+ντ )

SM prediction (CL= 2σ):

B(B+ → τ+ντ ) =
(

0.763
+0.214
−0.097

)
· 10−4

Average of several measurements by BaBar and Belle:

Bexp(B+ → τ+ντ ) = (1.68 ± 0.31) · 10−4

BSM(B+ → τ+ντ ) =
G2

F mB+m2
τ

8π

(
1 − m2

τ

m2
B+

)2

|Vub|2f 2
BτB+ .

But with e.g. fB = 210 MeV and |Vub| = 4.4 · 10−3 find
BSM(B+ → τ+ντ ) = 1.51 · 10−4. These parameters comply with
the global fit to the UT only, if new physics changes the
constraints from Amix

CP (Bd → J/ψKshort), ∆md or ∆md/∆ms.
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Global fit in the SM:

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2
(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

α

βγ

ρ
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FS
sτ & sΓ ∆

sm∆ & dm∆

φ ψ

s
φ

SM point

s∆Re 
-2 -1 0 1 2 3

s∆
Im

 

-2

-1

0

1

2

excluded area has CL > 0.68

FPCP 10

CKM
f i t t e r  mixing sB - 

s
 New Physics in B

SM point ∆s = 1 dis-
favoured by ≥ 2.7σ.

without 2010 CDF/DØ data on Bs → J/ψφ



Basics τBs Global analysis Conclusions

Global fit to UT hinting at φ∆d < 0:
Other authors have seen a tension with the SM in the same
direction stemming from ǫK .

Lunghi,Soni; Buras,Guadagnoli

In our fit the tension with ǫK is mild, because we use a more
conservative error on the hadronic parameter
B̂K = 0.724 ± 0.004 ± 0.067 and because the Rfit method is
more conservative.
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p-values:
Calculate χ2/Ndof with and without a hypothesis to find:

Hypothesis p-value

∆d = 1 2.5 σ

∆s = 1 2.7 σ

∆d = ∆s = 1 3.4 σ

∆d = ∆s 2.1 σ



Basics τBs Global analysis Conclusions

Fit result at 95%CL:

φ∆s = (−51
+32
−25)

◦ (and φ∆s = (−129
+28
−27)

◦)

Compare with the 2010 CDF/DØ result from Bs → J/ψφ:

CDF: φ∆s = (−29
+44
−49)

◦ at 95%CL

DØ: φ∆s = (−44
+59
−51)

◦ at 95%CL

Naive average: φavg
s = (−36 ± 35)◦ at 95%CL
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Is the result driven by the DØ dimuon asymmetry?
One can remove afs as an input and instead predict it from the
global fit:

afs =
(
−4.2

+2.7
−2.6

)
· 10−3 at 2σ.
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Is the result driven by the DØ dimuon asymmetry?
One can remove afs as an input and instead predict it from the
global fit:

afs =
(
−4.2

+2.7
−2.6

)
· 10−3 at 2σ.

This is just 1.5σ away from the DØ/CDF average

afs = (−8.5 ± 2.8) · 10−3.
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The fit in scenario II (real ∆s = ∆d ) is not better than the SM fit
and gives ∆ = 0.907

+0.091
−0.067.

Scenario III (complex ∆s = ∆d ) fits the data quite well
irrespective of whether B(B+ → τ+ντ ) is included or not.

Hypothesis p-value

∆ = 1 3.1 σ
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Conclusions

• Updated predictions:
2|Γs

12| = ∆ΓSM
s = (0.086 ± 0.025) ps−1

and −5 · 10−3 ≤ τBs

τBd

− 1 ≤ 10−3.
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12| = ∆ΓSM
s = (0.086 ± 0.025) ps−1

and −5 · 10−3 ≤ τBs

τBd

− 1 ≤ 10−3.

• The DØ result for the dimuon asymmetry in Bs decays
supports the hints for φs < 0 seen in Bs → J/ψφ data. The
central value is easier to accomodate if both as

fs and ad
fs

receive negative contributions from new physics.
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Conclusions

• Updated predictions:
2|Γs

12| = ∆ΓSM
s = (0.086 ± 0.025) ps−1

and −5 · 10−3 ≤ τBs

τBd

− 1 ≤ 10−3.

• The DØ result for the dimuon asymmetry in Bs decays
supports the hints for φs < 0 seen in Bs → J/ψφ data. The
central value is easier to accomodate if both as

fs and ad
fs

receive negative contributions from new physics.

• A global fit to the UT indeed shows a slight preference for a
new CP phase φ∆d < 0, driven by B(B+ → τ+ντ ) (and
possibly ǫK ). In a simultaneously global fit to the UT and
the Bs−Bs mixing complex a plausible picture of new
CP-violating physics emerges.
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Conclusions

• For 40 years theorists have pointed out the sensitivity of
meson-antimeson mixing to new physics. We may well
start to see this new physics in current data on B−B
mixing.
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meson-antimeson mixing to new physics. We may well
start to see this new physics in current data on B−B
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The Standard Model is already falsified from cosmological
data and neutrino experiments. LHCb could be the first
terrestrial experiment to see imprints of new TeV-scale
physics.
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A pinch of new physics in
B−B mixing?
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