

Particle production multiplicities at LHCb

Andrea Contu
University of Oxford
On behalf of the LHCb collaboration

6 December 2010

KRUGER 2010

Workshop on Discovery Physics at the LHC

Kruger National Park – South Africa

Contents

- Introduction to LHCb
- K_s production cross section
- $\overline{\Lambda}/\Lambda$, $\overline{\Lambda}/K_s$ production ratios
- p/p production ratio
- Inclusive Φ cross section
- Summary

The LHCb Experiment

Single arm spectrometer (2<η<5) for precision measurements of CP violation and rare B decays

2009: Calo (7μb⁻¹) 2010: 1 or more

reconstructed tracks (14nb⁻¹)

Provides measurements in a region of phase space complementary to GP detectors

Tracking

 $δp/p \sim 0.5\%$ - reconstruction efficiency ~95% Resolution for primary(secondary) vertices is $σ_z \sim 50(150) \mu m$

RICH Detectors

2 Ring Imaging CHerenkov (RICH) detectors provide charged particle identification in a momentum range of 2 - 100 GeV

RICH Detectors

RICH detectors provide excellent Particle Identification

Vital for $K/\pi/p$ discrimination and good tagging efficiency

3 Radiators needed RICH1 (2<p<60 GeV):

- → Aerogel, n~1.03
- $\bullet C_4 F_{10}$, n~1.0014

RICH2 (p>20 GeV)

◆ CF₄, n~1.0005

- First measurement for LHCb with 2009 pilot run data
- $\mbox{K}_{_{S}}\!\!\to\!\!\pi\pi$ selection based on tracking and impact parameters
- Two selections with long and downstream tracks
- First test for detector calibration

Published in: Phys. Lett. B 693 (2010) 69-80

New method to estimate luminosity using beam profiles estimated from vertices made by VELO tracks in beam-gas and beam-beam collisions

Most precise L determination for 2009 run Limited only by uncertainty on beam intensity

Good consistency with PYTHIA expectations $P_{\scriptscriptstyle op}$ spectra slightly harder

Published in: Phys. Lett. B 693 (2010) 69-80

Comparison with other experiments

Unique measurement at high rapidity and low P_T

Published in: Phys. Lett. B 693 (2010) 69-80

Hadron Production Ratios

Motivation:

- Baryon number transport
- Hadronisation
- MC tuning

2 analyses:

- V⁰ ratios (tracking & vertexing only)
- p/p (+ RICH PID)

Use minimum bias data No need to know absolute L

√/Λ - √/K_s analysis

- Long tracks
- Purely kinematic PID (Armenteros-Podolanski)
- $_{\rm s}$ K $_{\rm s}$ and Λ selection based on impact parameters
- Systematics partially cancel

Λ/Λ analysis

P_{_} spectra harder than predicted

Preliminary Results - Λ/Λ

Baryon transport higher than predicted at 0.9 TeV

Preliminary Results - 1/Ks

Baryon/Meson suppression lower than predicted

Prompt p/p Production Ratio

- Pure samples of protons selected with RICH particle ID
- Need to select samples of K and π to keep contamination under control
- Cuts tuned on MC but real efficiencies and *misID* are extracted from data using calibration samples of $\Lambda \rightarrow p\pi$, $\Phi \rightarrow KK$, $K_s \rightarrow \pi\pi$

Prompt p/p Production Ratio

Tracks from calibration samples demonstrate that protons are effectively selected

Contamination from K and π is also quantified

DLL(x-y) = Delta Log Likelihood between x and y particle hypotheses

p/p ratio – Analysis strategy

Contamination correction

From data $\begin{vmatrix} p_{Sel} \\ K_{Sel} \\ \pi_{Sel} \end{vmatrix} = \begin{vmatrix} p \to p & K \to p & \pi \to p \\ p \to K & K \to K & p \to K \\ p \to \pi & K \to p & \pi \to \pi \end{vmatrix} \begin{pmatrix} p_{True} \\ K_{True} \\ \pi_{True} \end{pmatrix}$ for each (P_T,η) bin particle charge

All corrections are applied independently for each (P_{τ}, η) bin and

$$\begin{vmatrix} p_{True} \\ K_{True} \\ \pi_{True} \end{vmatrix} = \begin{vmatrix} p \to p & K \to p & \pi \to p \\ p \to K & K \to K & p \to K \\ p \to \pi & K \to p & \pi \to \pi \end{vmatrix}^{-1} \begin{pmatrix} p_{Sel} \\ K_{Sel} \\ \pi_{Sel} \end{vmatrix}$$

Different interaction cross-sections in the material between p and p, particularly at low momentum Therefore limit analysis to tracks with P > 5 GeV and correct using MC

Preliminary Results – √s=0.9 TeV

CERN-LHCb-CONF-2010-009

Baryon transport higher than predictions and consistent with Λ/Λ

Preliminary Results – √s=7 TeV

CERN-LHCb-CONF-2010-009

Ratios become flatter as predicted by models

Better agreement with MC

Preliminary Results Comparison

Results over the wide LHCb Δy spread show consistency with other experiments

 $\Delta y = y(beam) - y(\Lambda, p)$

Results are being finalised and higher precision is expected

Inclusive Φ Cross Section

Unique way to study strangeness production

- Discrepancies from MC seen by all major LHC experiments
- Test QCD fragmentation models in pp interactions in LHCb's kinematic region

Φ→K⁺K⁻ candidates selection requires RICH PID information

Same decay mode is used to test RICH system performance

Inclusive Φ Cross Section

Cross section measurement is performed in bins of $P_{\scriptscriptstyle T}$ and Y

PID cuts efficiency estimated from data using tag&probe technique

Major systematics uncertainties	(%)
Tracking	8
Track Multiplicity	5
Reconstruction (binned)	~2
PID efficiency (binned)	~3
Luminosity	10
Combined	14.4

23

Magnet polarities

Data from both magnet polarities agree well

Statistical errors only

Preliminary Results - Ф

Both tunings underestimate Φ production in the measured kinematic range

Summary

LHCb has explored a unique kinematic region with first data

- All analyses limited by systematics
- Several analyses are investigating hadron production and will providing valuable input for QCD models and the LHCb MC retuning
- Proton analysis can be extended to provide further ratios

Preliminary results compared to models indicate:

Higher baryon transport

6 Dec 2010

- Harder P₊ spectra
- Underestimated strangeness production

Backup slides

p/p Analysis - raw ratios

p/p Analysis - raw ratios

29