

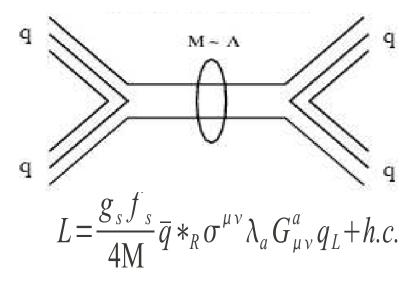
Exotic Dijet Searches in ATLAS

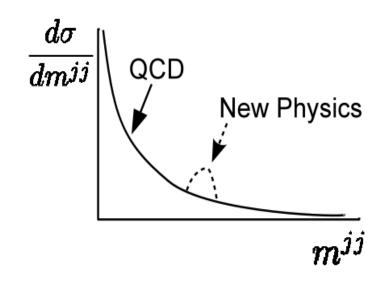
Reyhaneh Rezvani University of Toronto

On behalf of The ATLAS Collaboration

Workshop on Discovery Physics at the LHC Kruger 5-10 December 2010

Introduction

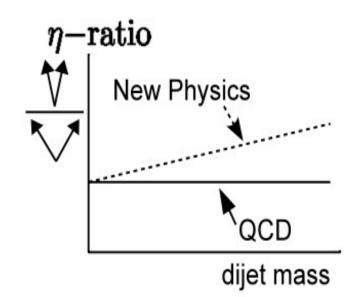

• Dijet events in the Standard Model (SM) are well described by perturbative QCD.


- However, many new physics scenarios predicting excess of dijet events over SM, can be studied *at the energy regime provided by the LHC*;
 - Compositeness (exemplifying quark substructure) → this talk
 - Extended Technicolour models
 - Chiral colour models (axigluons)

Compositeness; excited quark decays

(first part of the talk)

- Quarks may not be fundamental, but with substructure (preons)
- The substructures are visible above a compositeness scale Λ , below which quarks appear point-like
- If Λ is sufficiently low, narrow resonant states of excited quarks could be produced at the LHC energies.


Compositeness; quark contact interactions (second part of the talk)

• If Λ is much larger than the centre of mass energy of the colliding partons, the manifestation of compositeness will be an effective 4-fermion contact interaction

$$L_{qqqq}(\Lambda) = \frac{\xi g^{2}}{2 \Lambda_{q}^{2}} \bar{\Psi}_{q}^{L} \gamma^{\mu} \Psi_{q}^{L} \bar{\Psi}_{q}^{L} \gamma^{\mu} \Psi_{q}^{L}, g/4\pi = 1, \eta = +1$$

- New processes produce more central activity than QCD \longrightarrow an increase in the centrality ratio R_c above some dijet mass threshold;
 - R_c ; ratio of dijet events with the 2 highest pt jets both in the central region($|\eta| < 0.7$) to those with the 2 highest pt jets in the non-central region($0.7 < |\eta| < 1.3$).
 - The Jet Energy Scale(JES) is uniform to within 1% in the region $|\eta| < 1.3$.

Observables

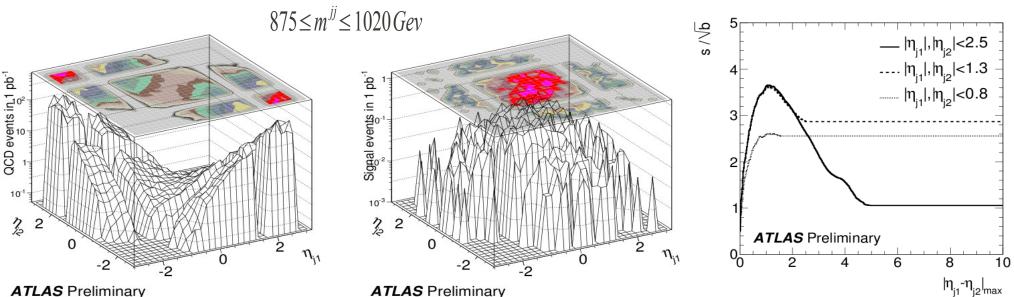
- First part: Dijet Resonance searches with 3.1 pb⁻¹ of 7 TeV LHC data;
 - With the dijet invariant mass as the observable:

$$m_{jj} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

- Second part: Quark contact interactions searches with 3.1 pb⁻¹ of 7 TeV LHC data;
 - With the dijet η -ratio R_c as the observable:

$$R_C = \frac{N(|\eta_{1,2}| < 0.7)}{N(0.7 < |\eta_{1,2}| < 1.3)}$$
, N: number of events

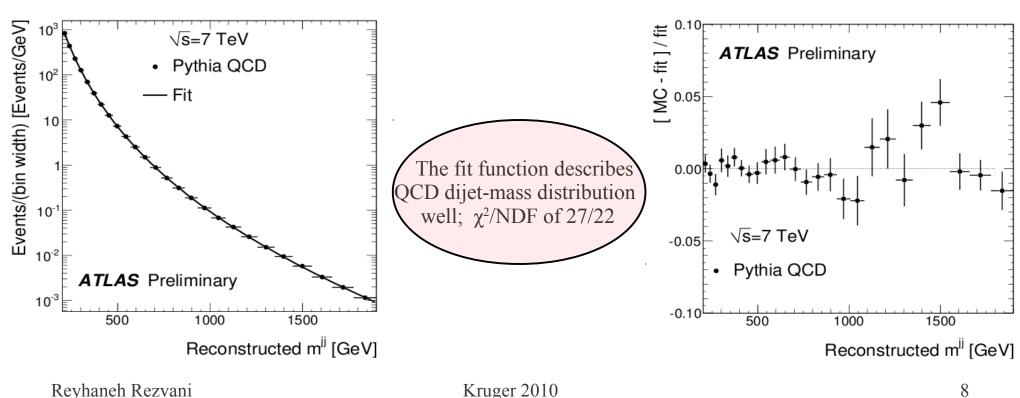
Dijet Resonance Searches


Event Selection

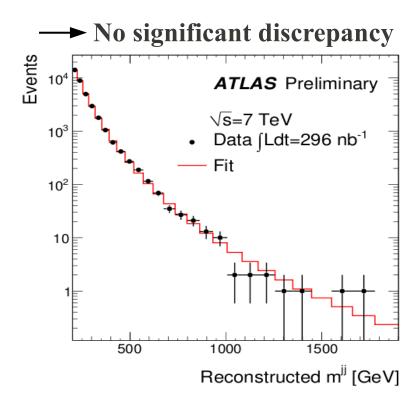
Jet algorithm: $AntiK_{t}$ with a radius parameter R = 0.6Input to jet finding: Topological Clusters

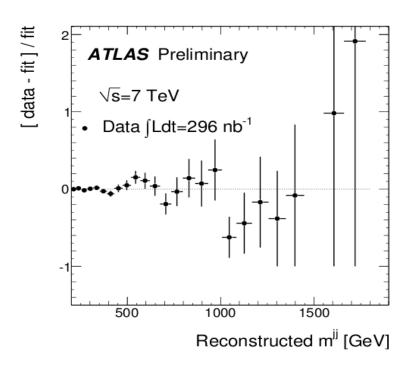
Jet Calibration: p_{t} - η dependent calibration factors based on

Monte Carlo

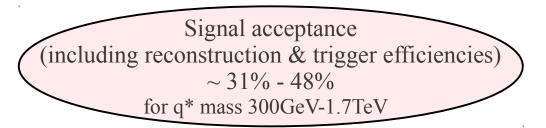

- Events with at least 2 jets with:
 - Leading jet $p_T > 150 \text{ GeV}$, 2^{nd} jet $p_T > 30 \text{ GeV}$
 - $|\eta_{12}| < 2.5$ (except 1.3 < $|\eta| < 1.8$) & $|\Delta \eta_{12}| < 1.3$, for the 2 leading jets
 - By optimising the signal from q* decay compared to the SM QCD background.
- Veto on events with a poorly measured jet above 15 GeV
- Apply the standard event quality cuts (Back Up)

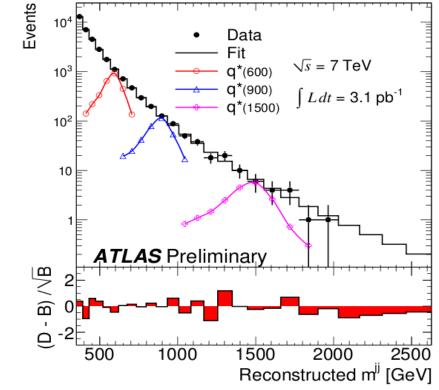
Background Determination


• The QCD background shape is determined by fitting this smooth & monotonically decreasing function to *data*:


$$f(x) = p_1(1-x)^{p_2} x^{p_3 + p_4 \ln x}, x \equiv m^{jj} / \sqrt{s}$$
 (1)

Search for a Shape Difference


- Consistency between data and background is checked using an array of statistical tests, sensitive to bumpy structures and overall disagreement.
- Large p-values of "data being described by SM prediction", from all the tests were obtained



Set Limits on the q* mass

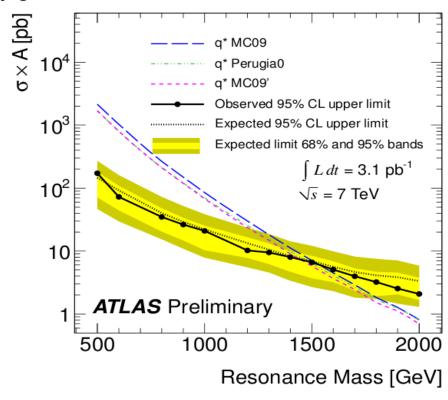
- A Bayesian approach to set 95% confidence level upper limits on σ . A (cross-section * Detector Acceptance)
 - A flat prior in the signal yield is assumed.
 - Systematic uncertainties considered as nuisance parameters in the calculation of the likelihood
- Data-driven normalisation of the background;
 - A simultaneous fit of background (eq1)
 and signal to data.

Reyhaneh Rezvani

Kruger 2010

Dominant Sources of Systematic Uncertainties

- The Jet Energy Scale (JES) uncertainty
 - as a function of jet $p_T & \eta$; within 6-9%
- The background fit parameters uncertainty
 - due to the finite statistics in determining the fit parameters from data.
 - Varies from $\sim 3\%$ at low dijet mass, to $\sim 30\%$ at high dijet mass.
- The integrated luminosity uncertainty
 - estimated to be $\pm 11\%$ on σ .A.
- The Jet Energy Resolution (JER) uncertainty
 - taken to be $\pm 14\%$ on the fractional p_T resolution of each jet.
 - Found to have negligible effect compared to the other three sources.


The 95% CL Upper Limits on σ.A

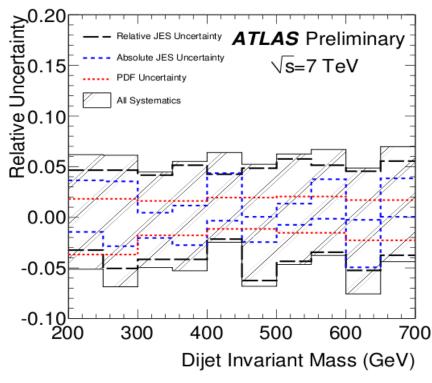
- Lower limits on the excited quark mass:
 - Intersection of the 95% CL curve with a theoretical prediction
 - Expected limits; by replacing data by pseudo-data*

A 95% CL q* exclusion mass region, using MRST2007 PDF & MC09 tune: [0.30,1.53] TeV

*pseudo-data: generated by random fluctuations around the fit of eq(1) to data.

*Yellow band: statistical fluctuations.

Dijet Centrality Ratio Searches

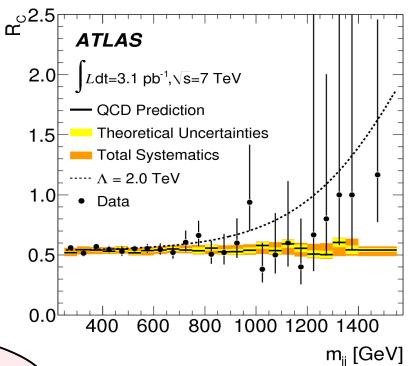

Event Selection

- Select events with at least two jets;
 - Leading jet $p_T > 60 \text{ GeV}$, 2^{nd} jet $p_T > 30 \text{ GeV}$
 - Asymmetric thresholds to avoid suppression of events with a 3rd jet coming from radiation.
 - $|\eta| < 1.3$ for the 2 highest pt jets
 - where the jet energy scale is known with high precision.
 - Central events: $|\eta_1| < 0.7$ (R_c definition; slide 4)
 - Non-central events : $0.7 < |\eta_1\rangle < 1.3$
- Veto on events with a poorly measured jet above 15 GeV
- Apply the standard event quality cuts

Systematic Uncertainties

- Experimental uncertainties:
 - Jet Energy Scale; p_T & η-dependent; 5-7%
 - \rightarrow results an uncertainty of up to 7% on R_c
- Theoretical uncertainties:
 - NLO QCD renormalisation & factorisation scales
 - PDF uncertainties; up to 2%.

→ Monte Carlo(MC) Pseudo-Experiments are generated to convolute these sources of uncertainties.



Comparison to QCD, and Bayesian Limits on the Compositeness Scale Λ

• Chi-square goodness-of-fit test;

$$\chi^2 / NDF = 0.66$$
, p-value = 0.85

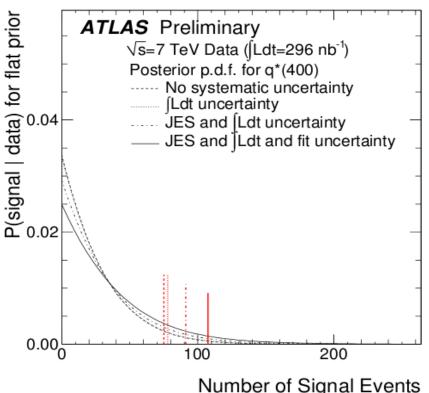
- → good agreement with QCD prediction
- Bayesian method to set limits;
 - Background determination is based on QCD Monte Carlo
 - Flat priors in $1/\Lambda^2$ or $1/\Lambda^4$ are assumed.

95% CL lower limit on the quark compositeness scale:

$$\Lambda = 2.0 \text{ TeV}$$
(Expected limit: 2.6 TeV)

Summary

- Dijet resonance search;
 - Data agrees well with the fit; no evidence of resonance
 - 95% CL limit on the excluded region of the q* mass with **3.1 pb**-1: [0.3,1.53] **TeV** [arXiv:1008.2461]
 - Latest limit from Tevatron: [260,870] GeV [arXiv: 0812.4036]
 - Latest limit from CMS: [0.5,1.58] TeV, with 2.9 pb⁻¹
- Dijet centrality ratio search;
 - Good agreement with QCD
 - 95% CL lower limit of 2.0 TeV on the compositeness scale, with 3.1 pb⁻¹ [arXiv: 1009.5069]
 - Latest limit from D0: 2.4 TeV, with different η cuts in R_c definition: [PRL 82: 2457–2462]

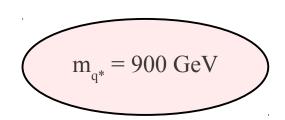

Limits will be soon updated using more LHC data!

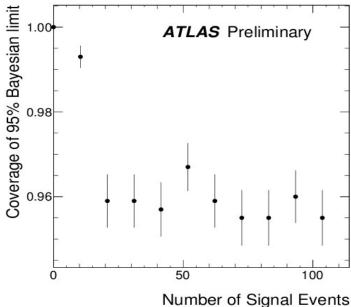
 \rightarrow For the dijet χ distribution search, please see Lorraine Courneyea's slides [Tuesday Exotics Session] .

Back Up

Effect of Uncertainties on the Posterior

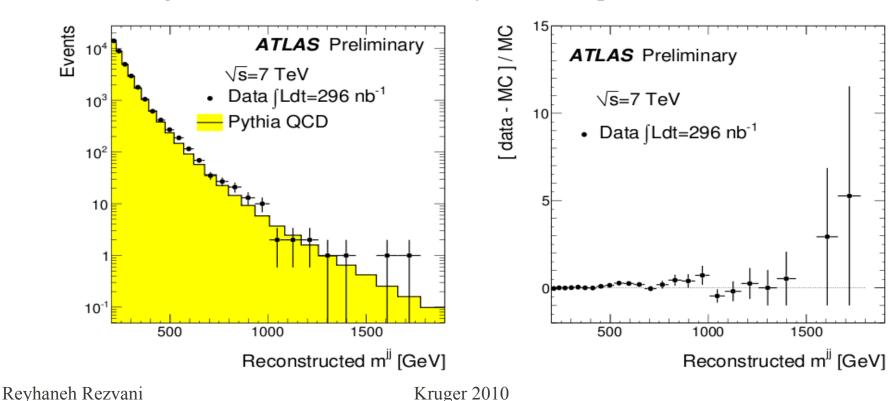
- All the four sources of uncertainties are treated as $p_{\scriptscriptstyle T}$ and η -dependent *nuisance* parameters in the likelihood function
- Integrating the resulting posterior for each of the q* masses \rightarrow 95% CL upper limits




Number of Signal Events

Frequentist coverage of the Bayesian limit (Dijet Resonance Search)

- A series of pseudo-experiments to determine the *coverage* of the 95% CL Bayesian limits;
 - The fraction of pseudo-experiments with number of signal yield in the Bayesian confidence interval.


The coverage probabilities lie in the vicinity of $95\% \rightarrow$ compatibility between Bayesian & Frequentist approaches.

Comparing data to LO QCD from Pythia (Dijet Resonance Search)

- Smaller p-values compared to those computed from the fit to eq(1)
 - Data agrees less well with the LO Pythia QCD prediction than with the fit.

21

Complete Event Selection

- At least one primary collision vertex with at least 5 tracks associated to it.
- Only jets with $|\eta| < 2.8$ are considered:
 - to avoid regions where the jet calibration has unknown systematic uncertainties.
- P_T Cut of the leading jet; based on the Level 1 jet trigger plateau
- P_T Cut of the next-to-leading jet; based on the jet reconstruction efficiency
- Bad quality jets:
 - Single-cell jets in the Hadronic End-Caps (HEC)
 - jets with bad-quality cells in the Electromagnetic calorimeter
 - Out-of-time jets (from large out-of-time energy depositions in the calorimeter)

q* mass limits with various PDFs

- 0.3 < m < 1.53 TeV (expected limit: 1.51 TeV) [MRST2007 LO*]
- 0.3 < m < 1.45 TeV (expected limit: 1.43 TeV) [CTEQ6L]

Anti-Kt Jet Algorithm

• For each input object (Topological Clusters), d_{ij} & d_{iB} are defined as:

$$d_{ij} = min(p_{Ti}^{-2}, p_{Tj}^{-2}) \frac{\Delta R_{ij}^{2}}{R^{2}}$$

$$d_{iB} = p_{Ti}^{-2}$$

$$\Delta R_{ij}^{2} = (y_{i} - y_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$$

- A list of d_{ii} & d_{iB} are formed;
 - If d_{ij} is the smallest entry; objects i & j are combined & the list is remade
 - If d_{iB} is smallest, it is a jet by itself
- Anti-Kt algorithm can be implemented in NLO QCD calculations
- The algorithm also produces geometrically well-defined (cone-like) jets.