LHCD THCS

Studies of hadronic B decays with early LHCb data

Aurélien MARTENS (LAL - Univ. Paris Sud 11 - Orsay) On behalf of the LHCb Collaboration

y and the current status of the CKM matrix

Full fit:

CKMfitter: $y = (67.2 \pm 3.9)^{\circ}$

UTfit: $\gamma = (65.6 \pm 3.3)^{\circ}$

Loop constraints are more precise than tree ones.

Good agreement with some small tension

CKMfitter: $\gamma = (71 \pm 23)^{\circ}$

UTfit: $\gamma = (78 \pm 12)^{\circ}$

Interest in more precise direct measurements

Introduction: y extraction at LHCb

- Current direct determination of γ is mainly dominated by Dalitz measurements in $B \rightarrow DK$, $D \rightarrow K_s hh$
- There are two direct ways to access the CKM angle y
 - \square In tree diagrams : B \rightarrow DX decays
 - Time integrated
 - Time dependent
 - \square In loop diagrams : B \rightarrow hh or hhh charmless decays
 - Assumes U-spin to extract y
 - □ All of these accessible with unprecedented precision at LHCb
- Precise measurements of direct, mixing induced and interferences induced
 CPV
- Measurements within Standard Model channels and new physics polluted ones
 - ☐ uncover new physics contributions in loops
 - by comparing it with trees
 - By comparing with global fit

Time integrated y from trees

- o An ideal Standard Model candle
 - lue Tree diagrams o no contribution from new physics in B decays
 - □ Neglect D mixing: dominant bias but still negligible (~1°)
 - Neglect CPV in D decays : negligible contribution
 - □ Absolute relative theoretical uncertainty (EW corrections): $\Delta \gamma / \gamma \sim 10^{-6}$

b→u and b→c transitions interfere

	BR	r_B
$B_+ \rightarrow D_0 K_+$	$(3.7 \pm 0.3) 10^{-4}$	0.1
$B_0 \rightarrow D_0 K_{\star 0}$	$(4.2 \pm 0.6) 10^{-5}$	~0.3

Do's reco. in the same final state: CP eigenstate KK, $\pi\pi$ [GLW] 2 bodies & al. $K\pi$, $K\pi\pi^0$, $K3\pi$ [ADS] Dalitz Kshh [GGSZ]

ADS: CLEOc constraints on D decay

Extentions:

 $D^0K\pi$ Dalitz analysis with higher statistics $B_s \rightarrow D\Phi$ integrated-untagged measurment

Time dependent y from trees

- An additional information from time dependent measurements
 - $\hfill \square$ Measure $\gamma + \Phi_M \rightarrow$ need an external model independent measurement of the mixing phase
 - \square Benefits from non vanishing lifetime differences [\bigcirc for B_s , \bigcirc for B_d]

	BR	x [R]	angle
$B_s \rightarrow D_s^+ K^-$	$(3.0 \pm 0.7) 10^{-4}$	0.4	γ + Φ_s
$B_d \rightarrow D^+\pi^-$	$(2.7 \pm 0.1) 10^{-3}$	0.02	γ+2β

Simultaneous U-spin based extraction :

resolve 8-fold ambiguities (degenerated at low statistics) in $B_d \rightarrow D^{+}\pi^{-}$

y from loops

- o Inclusive B→hh or hhh analyses
 - \Box b \rightarrow u involved in many (2,3)-bodies charmless B decays
 - \square Less particles in the final state \rightarrow more efficient trigger and reconstruction \odot

Examples of contributing and interfering diagrams (more in backup)

Decay mode	Contributing diagrams
$B^0 o \pi^+\pi^-$	T, P, PA, P_{EW}^C, E
$B^0 \to K^+\pi^-$	T, P, P_{EW}^C
$B_s^0 \to \pi^+ K^-$	T, P, P_{EW}^C
$B_s^0 \to K^+K^-$	T, P, PA, P_{EW}^C, E
$B^0 \to K^+K^-$	PA, E
$B_s^0 \to \pi^+\pi^-$	PA, E

BR 10⁻⁶→10⁻⁵

Upper limits 10-6

LHCb in a nutshell

The Challenge: precise rare decays and time-dependent CP asymmetries in a high background environment.

Needs excellent vertexing, p reconstruction, particle-ID

Trigger

Crossing rate

~ 10-20 MHz

Level 0

Custom hardware trigger

1 MHz

High Level Trigger

Software trigger

~ 2 Hz

The bottleneck:

- Bandwidth and rate limitations
- Already high (3.6 GeV) E_T hadronic triggers

HLT1:

- Build a 'good' track from any LO
- → Recover some efficiency for hadronic triggers

HLT2:

Inclusive Topological Trigger:

- Build a B using 2,3,4 tracks
- Compensate for missing $\ensuremath{p_{T}}$

Analysis requirements: PID

Hadronic B decays → intensive use of PID in any analysis

Performance is close to MC expectations

Lifetime and Tagging performance studies also under progress

Observations: time integrated y trees

Clean hadronic B signals observed reasonably in agreement with expectations

Wait for full 2010 run reprocessing to observe B→DK with D→KK

First observation of pure colour suppressed hadronic B decays in a hadron collider (?)

Expect 15 to 50 $B_s \rightarrow D^0 K^{*0}$ in the full 2010 reprocessing

Prospects: time integrated y trees

DK	A _{CP+}
BaBar	0.25 ± 0.06 ± 0.02
CDF	$0.39 \pm 0.17 \pm 0.04$
DK	A _{ADS}
Belle	-0.39 ± 0.26 +0.06 _{-0.04}
CDF	-0.63 ± 0.40 ± 0.23

Current status on the measurement of asymmetries

$$\begin{array}{ll} A_{\rm ADS} & = & \frac{\Gamma(B^- \to D(K^+\pi^-)K^-) - \Gamma(B^+ \to D(K^-\pi^+)K^+)}{\Gamma(B^- \to D(K^+\pi^-)K^-) + \Gamma(B^+ \to D(K^-\pi^+)K^+)} \\ & = & \frac{2r_Br_D\sin{(\delta_B + \delta_{K\pi})}\sin{\gamma}}{r_B^2 + r_D^2 + 2r_Br_D\cos{(\delta_B + \delta_{K\pi})}\cos{\gamma}} \,, \end{array} \hspace{0.5cm} \text{ADS} \end{array}$$

LHCb 1fb⁻¹ @ √s=7TeV:

Competitive measurements with current dominating measurements

possible first results from LHCb @ Winter 2011 conferences:

- A_{CP+} and R_{CP+} competing with CDF
- ratios of BR(B \rightarrow DK)/BR(B \rightarrow D π)
- First observation of $B_s \rightarrow D^0 K^{*0}$ and $BR(B_s \rightarrow D^0 K^{*0})/BR(B_d \rightarrow D^0 \rho^0)$

~15° LHCb combined sensitivity on time integrated γ in 2011

Observations: time dependent y trees

 $B^+ \rightarrow D^0 \pi \pi \pi$ & $B^0 \rightarrow D^+ \pi \pi \pi$

Six body final states observed!

$$B_s \rightarrow D_s(\Phi \pi)\pi$$

 $B_s \rightarrow D_s \pi \pi \pi$ also seen

Prospects: time dependent y trees

B factories legacy

possible first results from LHCb @ Winter 2011 conferences:

- Measurements of ratio of BR(B $^0\rightarrow$ DK)/BR(B $^0\rightarrow$ D π)
- Upper limits on $B_s \rightarrow D(K,\pi)$
- First observations of $D_{(s)}(K\pi\pi)$ and best measurements of $D_{(s)}(\pi\pi\pi)$
- fd/fs from N(B⁰ \rightarrow DK)/ \mathring{N} (B_s \rightarrow D_s π)

~15° statistical sensitivity on time dependent γ in 2011

Observations: y loops

Raw asymmetries already visible by eye $! \rightarrow$ work ongoing on proper estimates

Prospects: y loops

	B ⁰ →Kπ
PDG10Aver.	-0.098 ± 0.013
CDF	-0.086 ± 0.023 ± 0.009
	$B_s \rightarrow K\pi$
CDF	0.39 ± 0.15 ± 0.08

possible first results from LHCb @ Moriond 2011:

- Measurement of BR(B_s \rightarrow K π)/BR(B_d \rightarrow K π)
- A_{CP} measurements competitive with CDF results

~15° sensitivity on y loops for LHCb by fall 2011

Summary

- LHCb is performing well and is already able to observe hadronic B decays.
 - \square 10⁻⁵ and 10⁻⁶ hadronic decays are observed or about to be so
 - Discoveries of new expected B_s decay modes hopefully for Winter conf.
 - □ Raw asymmetries observed in some channels
 - Hopefully calibrated by Winter conf. to produce first CPV results

LHCb will be competitive with CDF results

- Wait for even more exciting data taking periods in 2011
 - □ y sensitivity is going to be of the order of 15° in loops AND trees
 - □ y sensitivity of 15° both in time independent AND time dependent trees
 - Competitive with existing measurements

LHCb will improve our knowledge on y by the end of 2011

Thank you

Have fun: find the 4 PV's!

LHCb Event Display

Additional requirements: Lifetime & tagging

Lifetime and Tagging are key ingredients for time dependent and B→hh

Lifetime resolution of 77fs (worse than expected)
Recent improvements obtained

Tagging performance studies under progress

Charmless diagrams

