

Workshop on Discovery Physics at the LHC, South Africa, December 2010

Outline

- Introduction
- The CMS detector at the LHC
- Analysis strategy
- Online selection
- Offline reconstruction and selection
 - Ionization energy loss
 - Mass measurement
- Background estimation
- Systematic uncertainties
- Results
- Summary

Introduction

- Theoretical motivation:
 - Heavy Stable Charged Particles (HSCP) are predicted by many BSM theories
 - Some SUSY flavors predict long living gluino, stop, stau, etc.
 - Hidden valley models, extra dimensions, certain GUTs, etc.
 - Two main classes of particles:
 - Lepton-like, no strong interactions
 - Hadron-like, color-charged hadronize to form "R-hadrons"
 - Strongly interacting particles form stable states with quarks/gluons
- Detector signature:
 - Slowly moving high momentum particle, typically reconstructed and identified as a muon
 - High momentum track
 - Anomalously high ionization energy loss (dE/dx)
 - High time-of-flight (currently not used)

Compact Muon Solenoid Detector

21.6 m

Resistive Plate Chambers (RPC)

CMS powers unity section.

The CMS Tracker

CMS Tracker in Operation

CMS Tracker in Operation

CMS Tracker in Operation

Data

- CMS recorded 43.17 pb⁻¹ at $\sqrt{s} = 7 \text{ TeV in } 2010$
- Data recording efficiency exceeds 90%
- Only highest quality data used for physics analyses
- Results shown today use a partial sample:
 - April to July 2010
 - Corresponding to 198 nb⁻¹
- Publication based on 3 pb⁻¹ in preparation

Phenomenology

Properties

M. Fairbairn et al, Phys. Rept. 438 (2007) 1-63

- Very Heavy: O(100 GeV/c²) or more
- → In general non-relativistic

■ ct ~ O(m) or larger

→ Usually, do not decay in detector

- Have electric and/or strong charge
- Allowed by many models beyond SM (mGMSB, Split SUSY, MSSM,UED)
 - In general, long lifetime is a consequence of a quantum number conservation
 - → e.g. : SUSY with R-parity or UED with KK-parity
 - → Heavier states could also be quasi stable if decay phase space is small
 - If coloured, HSCP will hadronize and form an "R-Hadron"
 - \rightarrow Fraction of gluino-balls is a relevant unknown parameter $\stackrel{\text{Baryons}}{\sim}$ Mesons gqqbar, t₁qbar from the experimental point of view.

Gluino-balls

Benchmark Models

- Lepton-like (tracker+muon analysis)
 - mGSMB staus on SPS Line 7 [100 300] GeV
 - PYTHIA
- R-Hadrons (tracker-only analysis)
 - Direct pair-production of stops
 - PYTHIA and MadGraph; K-factors from PROSPINO (NLO)
 - Direct pair-production of gluinos
 - PYTHIA, K-factors from PROSPINO (NLO+NLL)
- Masses: ~I30 900 GeV
- Cross sections: [10-3, 103] pb
- Hadronization performed by PYTHIA
 - For gluinos : gluino-ball fraction = 10%
- R-Hadron interaction with matter simulated by Geant4

R.Mackeprang and A.Rizzi, Eur.Phys.J.C50 (2007) p.353

Cross Sections

Theoretical	HSCP	Mass Expected Cross Section (Pb)			(Pb)
Model	посг	(GeV)	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 10 \text{ TeV}$	$\sqrt{s} = 7 \mathrm{TeV}$
mGMSB	$ au_1$	156	$1.19 \times 10^{+0}$	3.60×10^{-1}	1.00×10^{-1}
mGMSB	$ au_1$	247	9.70×10^{-2}	3.00×10^{-2}	8.24×10^{-3}
mUED	$ au_{kk}$	300	2.15×10^{-2}	1.19×10^{-2}	5.70×10^{-3}
split SUSY	$ ilde{m{g}}$	200	$2.20 \times 10^{+3}$	$9.22 \times 10^{+2}$	$3.27 \times 10^{+2}$
split SUSY	$ ilde{g}$	300	$1.00 \times 10^{+2}$	$9.89 \times 10^{+1}$	$2.77 \times 10^{+1}$
split SUSY	$ ilde{g}$	600	$5.00 \times 10^{+0}$	$1.09 \times 10^{+0}$	1.71×10^{-1}
split SUSY	$ ilde{g}$	900	4.60×10^{-1}	4.47×10^{-2}	3.94×10^{-3}
split SUSY	$ ilde{g}$	1200	6.10×10^{-2}	3.26×10^{-3}	1.69×10^{-4}
split SUSY	$ ilde{g}$	1500	1.00×10^{-2}	3.24×10^{-4}	1.11×10^{-5}
MSSM	$ ilde{t}_1$	130	$1.11 \times 10^{+3}$	$4.84 \times 10^{+2}$	$1.81 \times 10^{+2}$
MSSM	$ ilde{t}_1$	200	$1.77 \times 10^{+2}$	$6.92 \times 10^{+1}$	$2.22 \times 10^{+1}$
MSSM	$ ilde{t}_1$	300	$2.74 \times 10^{+1}$	$9.30 \times 10^{+0}$	$2.47 \times 10^{+0}$
MSSM	$ ilde{t}_1$	500	$1.27 \times 10^{+0}$	3.42×10^{-1}	6.39×10^{-2}
MSSM	$ ilde{t}_1$	800	7.80×10^{-2}	1.49×10^{-2}	1.56×10^{-3}

Cross sections up to ~300 pb @ 7TeV

Signature

Non-relativistic track with High Momentum

Detection Techniques

- Typical signature of an HSCP particle in CMS detector is quite similar to a muon with some differences:
 - Low velocity $(\beta < I)$: so late arrival in outer detectors
 - Low velocity: so higher ionization compared to SM particles in the same momentum range
- Methods:
 - p measured from track bending in inner tracker/muon systen
 - β from
 - Energy loss in inner tracking system
 - Time of Flight in muon system (not used in this analysis)
 - m from p / $(\beta \gamma c)$
 - if m is heavier than any stable SM particle → HSCP
- Issues:
 - Neutral R-Hadrons will give no signal in the detectors
 - Charge flipping when suffering hadronic interactions (gluino or stop hadrons)
 - Makes tracking more difficult

Analysis Overview

- Signature based search
 - look for high p_T tracks with high dE/dx
- Two analysis paths:
 - Track+muon:
 - Muon Id + dE/dx in silicon strip tracker
 - HSCP that get reconstructed as muons
 - Lepton-like and R-hadrons without charge suppression
 - Track-only:
 - dE/dx in silicon strip tracker
 - R-hadrons that become neutral, etc.
 - R-hadrons with charge suppression

Trigger Strategy

- Muon triggers:
 - Useful for most models
 - Efficiency depends on the HSCP mass and model
 - Very robust with respect to the p_T threshold
 - single μ : $p_T > 3$ GeV
 - double μ : $p_T > 0$ GeV
 - 15 45% efficiency for R-Hadrons (low mass-high mass)
 - >90% efficiency for staus
- Jet /Missing E_T triggers:
 - Useful for certain models (in particular for mGMSB)
 - Less sensitive to timing/ β issues
 - Jet $p_T > 30 \text{ GeV}$
 - MET > 45 GeV
 - 25 85% efficiency for R-Hadrons (low mass-high mass)
 - >60% efficiency for staus
- Combined trigger efficiency: >50% for R-Hadrons, >95% for staus

Ionization Energy Loss (I)

- Energy loss is measured in the Silicon Strip Tracker
 - \sim O(10) Δ E/ Δ x measurements (with large statistical fluctuation)
 - can be combined to estimate the Most Probable $\Delta E/\Delta x$

- Cluster charge interpreted in two ways:
 - I. dE/dx discriminator
 - 2. dE/dx harmonic estimator
- Assume that all measurements are extracted from a unique Landau distribution
 - Need accurate strip detector inter-calibration

Ionization Energy Loss (II)

dE/dx MPV estimator

- Harmonic-2 estimator: $I_h = \left(\frac{1}{N}\sum_i c_i^k\right)^{1/k}$ with k = -2
- Measuring ionization MPV to be used in HSCP mass reconstruction
- dE/dx discriminators

- Tail prob. depends on the path-length
- ADC cut-off

- Test statistic f(P_b)
 - P_h = Probability for a MIP to release as much or less charge than observed
 - Modified Smirnov-Cramer-von Mises:

$$I_{as} = \frac{3}{N} \times \left(\frac{1}{12N} + \sum_{i=1}^{N} \left[P_i \times \left(P_i - \frac{2i-1}{2N}\right)\right]^2\right)$$

Mass Reconstruction (I)

- Mass reconstruction tuned on high quality tracks from a minimum bias sample
 - ≥ 12 strip hits, good primary vertex
- dE/dx estimator

$$I_h = K \frac{m^2}{p^2} + C$$

(approximation of the Bethe-Bloch formula, good to 1% in the range 0.4< β <0.9)

- K and C parameters extracted from proton mass line
 - $K = 2.579 \pm 0.001$
 - $C = 2.557 \pm 0.001$
- Approximate Bethe-Bloch Formula before minimum $(0.2 < \beta < 0.9)$, few % agreement
- Reverse the relation to compute the mass of any track from dE/dx estimator and p

Mass Reconstruction (II)

- At high masses the reconstructed is biased due to an due an ADC cut-off
- ADC Range is limited to [0,253] counts
 - 254 indicates a charge in [254,1023]
 - 255 indicates a charge above 1023
- Second peak at lower mass also due to this effect... (>1 strip saturating / cluster)
- This effect has no impact on this analysis (counting experiment)

Cluster Cleaning

- Single tracks produce clusters distributed over 1-2 strips
- Cluster cleaning: discard clusters likely to be produced by overlapping tracks, nuclear interactions, etc.
 - multiple maxima from the dE/dx computation
 - >2 consecutive strips with comparable charge
- dE/dx tail (data) highly reduced
- No significant modification of the signal dE/dx distribution

Event Selection

- Preselect tracks:
 - $p_T > 7.5 \text{ GeV}$
 - $\delta p_T/p_T < 15\%$
 - Impact parameter: $|d_Z| < 2$ cm, $|d_{xy}| < 0.25$ cm
 - Number of dE/dx measurements: at least 3 Silicon Strips hits 10⁻³
- Apply cluster cleaning
- Split into subsamples by η and nHits
- Cut on p_T and dE/dx discriminator
- Tracker+Muon analysis:
 - Inner track from Global muons and Tracker muons
 - No inner track sharing allowed

Cuts chosen per subsample

→ 2x S/B ratio improvement

Background Estimation (I)

- dE/dx discriminator distribution for pre-selected tracks
 - Control (7.5 < p_T < 20 GeV) and signal-like samples (p_T > 20 GeV)
- No significant correlation between dE/dx and p_T

Background Estimation (II)

- Independence of p_T and dE/dx selection cuts allows a data-driven background estimation
 - Using ABCD method method to estimate background in the signal region
 - # entries in signal region D = (B*C)/A
 - Can also predict shape of mass distribution

- Cut placement does not impact signal yield
 - optimize for constant background rejection across nHits and η subsamples
- Procedure is applied in every nHit/ η sub-samples and results are combined
- Two sets of selections
 - Tight (signal search)
 - Loose (control sample)

Tracker+Muon: Loose Selection

Good agreement between data and MC

LOOSE	Exp.	Obs.	Exp. in full spectrum	Obs. in full spectrum
Tracker+Muon	82 ± 33	77	1007 ± 200	838
Tracker Only	108 ± 38	122	184 ± 250	260

LOOSE	ϵ_{p_T}	p_T^{cut}	ϵ_I	I_{as}^{cut}
Tracker+Muon	$10^{-1.0}$	7.7 - 25.9	$10^{-1.5}$	0.0036 - 0.4521
Tracker only	$10^{-2.0}$	7.9 - 67.4	$10^{-2.0}$	0.0037 - 0.5293

Tracker-Only Loose Selection

- High mass (M>300) candidate have a relatively small ionization and a large momentum, not a strong candidate
- All points with $I_h > 5$ MeV/cm are small tracks (<5 hits) at high eta, with generally few of their SiStrip clusters having at least one saturating strip
- None of them are real candidates, but well expected background

Search Strategy

- Define a mass region for signal search: [75,1200] GeV
- Choose optimal selection from data-driven background prediction (~0.05 events) and simulated signal samples
- Count events in signal region
- If compatible with expected background, set 95% C.L. upper limit on cross section for benchmark signals
- Statistical methods
 - Full Bayesian method with lognormal prior for integration over nuisance parameters
- Signal region:
 - ~0.05 events expected for both analyses
 - No events are observed for chosen selections

Systematics

- Search performed as a counting experiment in the reconstructed mass range of 75 - 1200 GeV
- 95% C.L. limits computed with a fully Bayesian method with lognormal prior for nuisance parameter integration; assuming zero expected background events

Source of Systematic Error	Relative Uncertainty (%)		
Theoretical cross section	15		
Expected background	36(Tk) ; 40 (Tk+Mu)		
Integrated luminosity	11		
Trigger efficiency	15		
Muon reconstruction efficiency	5		
Track reconstruction efficiency Momentum scale	< 5		
Momentum scale	< 5		
Ionization energy loss scale	$< 3 (8 \text{ for } 100 \text{ GeV}/c^2 \tilde{\tau}_1)$		
Total uncertainty on signal acceptance	20		

Norbert Neumeister, Purdue University

10⁻³

Tracker+Muon Results

 Gluino masses < 284 GeV/c² are excluded (under 15% TH-uncertainty hypothesis)

600

400

• Systematic errors already incorporated in Cross-Section limits

00 800 HSCP Mass (GeV/c²)

200

Tracker-Only Results

- Gluino masses < 27 | GeV/c² are excluded (under 15% TH-uncertainty hypothesis)
- Systematic errors already incorporated in Cross-Section limits

HSCP Mass (GeV/c2)

900

20

85

83

0.013

308

56

31

29

0.002

61

0.46

800

27

63

61

0.00123

247

34

0.008

Conclusions

- Search for both hadron- and lepton-like HSCP performed in CMS with 198 nb⁻¹ of 7 TeV LHC data
- Signature-based analysis looking for highly ionizing, high momentum tracks in the Silicon Tracker
- Two versions of the analysis, with and without the requirement of having the track identified as a muon in the Muon System
- Obtained 95% C.L. limits on benchmark model cross sections
- Tracker-only analysis excluded Gluino masses below 284 GeV/c² under the 15% theoretical uncertainty hypothesis
- Tracker-muon analysis excluded Gluino masses below 271 GeV/c² under the 15% theoretical uncertainty hypothesis