Direct searches for light new physics with BaBar

Kruger National Park, Dec 2010

Motivation

- NMSSM proposed to reduce the amount of fine tuning of the MSSM
- NMSSM adds a singlet Higgs field to MSSM which results in an additional CP-odd Higgs that mixes with MSSM CP-odd Higgs: $A^0 = \cos(\theta_A)a_{MSSM} + \sin(\theta_A)a_{singlet}$,
 - For m_{A0} < 2 m_b the lightest CP-even Higgs (h^0) can evade LEP bound by $h->A^0A^0$ (BF>0.7)
 - Large BF for $\Upsilon \rightarrow \gamma A^0$ possible
- Generic dark matter models predict a light component of the dark matter spectrum
 - BR($\Upsilon \to \gamma A$)~ 10^{-6} - 10^{-5} with m_A ~ 400-800 MeV Nomura, Thaler, PRD79, 075008 (2009) and other
- HyperCP resonance-like structure in Σ→pµµ decays, could be a light CP-odd Higgs (0.2GeV)
 Phys. Rev. Lett. 94, 021801 (2005)

BR(T→γa₁

$$m(A^0) < 2M(\tau)$$

 $2M(\tau) < M(A^0) < 7.5 GeV$
 $7.5 < M(A^0) < 8.8 GeV$
 $8.8 < M(A^0) < 9.2 GeV$

In this talk...

Searches for light-Higgs/ dark matter candidates:

•
$$Y(3,2S) \rightarrow \gamma A^0$$
, $A^0 \rightarrow \mu^+ \mu^-$

• Y(3S)
$$\rightarrow \gamma A^0$$
, $A^0 \rightarrow \tau^+ \tau^-$

- $\Upsilon(3S) \rightarrow \Upsilon(1S) \pi \pi$, $\Upsilon(1S) \rightarrow Invisible$
- $\Upsilon(2S) \rightarrow \Upsilon(1S) \pi \pi$, $\Upsilon(1S) \rightarrow \gamma$ Invisible
- Indirect search for light higgs through a lepton universality test
- Direct search for Dark sector

Neus Lopez March, Kruger National Park, Dec 2010

BaBar detector

Located at the single IP of the e⁺e⁻ assymetric collider at SLAC National Accelerator Laboratory

BaBar Dataset

- BaBar datasets from Dec 2007 to April 2008:
 - $122 \times 10^6 \text{ Y}(3\text{S}) \text{ decays}$
 - $-99 \times 10^6 \text{ Y}(2\text{S}) \text{ decays}$
 - "offpeak" 1.4fb⁻¹ ~30MeV below Y(2S)
 - "offpeak" 2.4fb⁻¹ ~30MeV below Y(3S)

$$Y(3,2S) \rightarrow \gamma A^0, A^0 \rightarrow \mu \mu$$

PRL 103, 081803 (2009)

$$Y(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau \tau$$

PRL 103, 181801 (2009)

$122 \times 10^6 \text{ Y}(3\text{S}) \text{ decays}$ 99 x 10⁶ Y(2S) decays

- Search for Y(3,2S) $\rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+ \mu^-$
- Select one energetic (E*>0.2GeV)
 photon and two tracks
 kinematically compatible with
 the CM energy
- Search for a narrow peak in the reduced mass distribution:

$$m_R = \sqrt{m_{A^0}^2 - 4m_{\mu}^2}$$

Main background comes from:

- $e^+e^- \rightarrow \gamma \mu^+ \mu^-$
- ISR production of $\rho(770)$, $\phi(1020)$, J/ψ , $\Upsilon(1S)$

$A^0 \rightarrow \mu\mu$

Fit

- Scan on the mass range: $0.212 < m_{A0} < 9.3 GeV$
- 1955 scan points at 2-5 MeV steps in the Y(2S) and Y(3S) datasets

Distributions of significances for the scan points:

no deviations from normal distributions

$A^0 \rightarrow \mu\mu$

- Set UL for both datasets
- Extract f²_Y B_{μμ} where f²_Y is the effective Yukawa coupling of the bound bquark to the A⁰

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to l^+ l^-)} = \frac{f_{\Upsilon}^2}{2\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(nS)}^2} \right)$$

 $f^2\gamma$ (m_{A0}=0.214GeV) <1.6x10⁻⁶ at 90% CL

Significantly smaller to be able to explain the HyperCP events as light Higgs production

Previous CLEO UL on Y(1S): $(1-10) \times 10^{-6}$ PRL 101,151802 (2008)

$$Y(3,2S) \rightarrow \gamma A^0, A^0 \rightarrow \mu\mu$$

PRL 103, 181801 (2009)

$$Y(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau \tau$$

PRL 103, 181801 (2009)

122 x 10⁶ Y(3S) decays

- Search for Y(3S) $\rightarrow \gamma A^0$, $A^0 \rightarrow \tau \tau$
- 3 final states: $\tau\tau \rightarrow ee$, $\mu\mu$, $e\mu$ (+4 ν)
- Search for a narrow peak in the photon energy distribution range: 4.03<m_{A0}< 10.10 GeV/c²
- Select events with 1 energetic photon $(E_{\gamma}>100 \text{ MeV})$, two identified leptons and a large missing energy and mass

Main background comes from:

- **QED events** (e+e- $\rightarrow \gamma \tau + \tau$ -, and higher-order processes)
- **Peaking events**: Y(3S) $\rightarrow \gamma \chi b J(2P)$, $\chi b J(2P) \rightarrow \gamma Y(nS)$, with J=0,1,2 and n=1,2

Scan for peaks in the E_{γ} distribution in steps of half the resolution (307 scans in total)

In a range corresponding to 4.03<M(A₀)<10.10GeV

Most of the scanning points give a yield between 2-3 σ No peaking structure is observed

$A^0 \rightarrow \tau \tau$

- ▶ No statistically significant yield -> Set 90% CL UL
- ► BR(Y(3S) $\rightarrow \gamma A_0$)·BR($A_0 \rightarrow \tau \tau$) < (1.5-16)·10⁻⁵

Neus Lopez March, Kruger National Park, Dec 2010

 $9.52 < M(A_0) < 9.61 \text{ GeV/c}_2$

$\Upsilon(2S) \to \Upsilon(1S) \pi \pi$, $\Upsilon(1S) \to \gamma$ Invisible

arxiv:1007.4646[hep-ex]

 $\Upsilon(3S) \to \Upsilon(1S) \pi \pi$, $\Upsilon(1S) \to Invisible$

PRL 103, 251801 (2009)

$\Upsilon(1S) \rightarrow \gamma \text{ invisible}$

Analysis

- Search for $\Upsilon(1S) \rightarrow \gamma$ + invisible in $\Upsilon(2S) \rightarrow \Upsilon(1S) \pi \pi$ decays
- Resonant $\Upsilon(1S) \rightarrow \gamma + A^0 (\rightarrow \text{invisible,BF} \sim 10^{-4})^{1}$ or $\Upsilon(1S) \rightarrow \gamma \chi \overline{\chi} (BF \sim 10^{-5} - 10^{-4})^{2}$
- $A^0 \rightarrow \chi^0 \chi^0$ can be dominant decay in some NMSSM scenarios with a light neutralino (LSP)
- Signature: single energetic photon
 (>1.1GeV) and large amount of missing
 energy and momentum + two pions
- Used a Neural Network discriminant to suppress the main background, trained in MC and Off-peak data

99 x 10⁶ Y(2S) decays

¹ PRD76,051105(2007)

2 PRD 80,115019(2009), arXiv: 0712.0016[hep-ph] (2007)

Main background comes from:

- $e^+e^- \rightarrow \gamma \pi^+\pi^-$, $\Upsilon(1S) \rightarrow \gamma I^+I^-$ (continuum)
- peaking background: $\Upsilon(1S) \rightarrow \gamma \ K^0 \ K^0 \ and \ \Upsilon(1S) \rightarrow \gamma n \overline{n}$

$\Upsilon(1S) \rightarrow \gamma \text{ invisible}$

Extract signal yield as function of m_{A0} ($0 \le m_{A0} \le 8$ GeV,196 steps) ($7.5 \le m_{A0} \le 9.2$ GeV,146 steps) and $m\chi$ ($0 \le m\chi \le 4.5$ GeV,17steps) performing 2D fit to:

$$M_{\text{recoil}}^2 = M_{\Upsilon(2S)}^2 + m_{\pi\pi}^2 - 2M_{\Upsilon(2S)}E_{\pi\pi}^*$$

 $M_X^2 = (\mathcal{P}_{e^+e^-} - \mathcal{P}_{\pi\pi} - \mathcal{P}_{\gamma})^2$

Previous limits: $B(\Upsilon(1S) \rightarrow \gamma \chi \chi \sim 10^{-3} (CLEO), B(\Upsilon(1S) \rightarrow \gamma (X \rightarrow invisible) < 3x10^{-5} (m_X \sim <7.2 GeV) at 90% C.L$

NMSSM predictions vs BaBar limits

 $2m_{\tau} < m_{A0} < 7.5 \text{ GeV}$ $7.5 \text{ GeV} < m_{A0} < 8.8 \text{ GeV}$ $8.8 \text{ GeV} < m_{A0} < 9.2 \text{ GeV}$

Also place significant constraints on other models

$$\Upsilon(2S) \to \Upsilon(1S) \pi \pi$$
, $\Upsilon(1S) \to \gamma$ Invisible

arxiv:1007.4646[hep-ex]

 $\Upsilon(3S) \to \Upsilon(1S) \pi \pi$, $\Upsilon(1S) \to Invisible$

PRL 103, 251801 (2009)

$\Upsilon(1S) \rightarrow invisible$

- Observation of SM particles coupling to undetectable final states might provide information on candidate dark matter constituents
- Identify the Y(1S) from the Y(3S) \rightarrow Y(1S) $\pi\pi$ with recoil dipion mass consistent with Y(1S)

$$M_{\rm rec}^2 = s + M_{\pi\pi}^2 - 2\sqrt{s}E_{\pi\pi}^*$$

 Select two soft pions and absence of significant additional activity in the detector ("invisible" sample)

Main background comes from:

- Peaking background: Y(1S) final state undetected
- non-peaking bckg: two pairs of low-momentum pions

$\Upsilon(1S) \rightarrow invisible$

- Used MVA to suppress nonpeaking background (trained on sideband data and signal MC, optimized to minimize background statistical error)
- Used "visible" data sample (Y(1S) → 1or 2 tracks) to check and correct MC predictions for the peaking background

Estimated yield and corrected (from MC): 2444±123 (peaking) Signal yield: -118±105(stat.)±124(syst.)

B(Y(1S) →invisible) = -1.6 ± 1.4(stat) ± 1.6(syst) x
$$10^{-4}$$
 < 3.0 x 10^{-4} at 90% C.L

Previous limits: $<3.9x10^{-3}$ (CLEO), $<2.5x10^{-3}$ (Belle) at 90% C.L

Lepton Universality test in:

$$\Upsilon(3S) \rightarrow \Upsilon(1S) \pi \pi, \Upsilon(1S) \rightarrow I^+I^-$$

PRL 104,191801(2010)

LU test

- In the SM couplings of gauge bosons to leptons are independent of the lepton flavor
- SM expectation for $R_{II'} = BF(Y(nS) \rightarrow I^+I^-) / BF(Y(nS) \rightarrow I'^+I'^-) \sim 1$ (except for small lepton-mass effects, $R_{T\mu} \sim 0.992$)
- In NMSSM deviations from $R_{II'}$ may appear due to the existence of a light pseudo-scalar Higgs boson A^0 mediating the decay

 A deviation from R_{II}~1 will be observed due to the proportionality of the coupling of the Higgs to the lepton mass

LU test

Result

- Used the dedicated Y(3S) sample, ~122M Y(3S) events
- Tag Y(1S)exploiting Y(3S) \rightarrow Y(1S) $\pi^+\pi^-$ (BF \sim 5%),Y(1S) $\rightarrow \tau^+\tau^-$ and $\mu^+\mu^-$
- Difficulty of the analysis is the $\tau^+\tau^-$ channel:
 - -separate selection for $\tau^+\tau^-$ and $\mu^+\mu^-$
 - -for $\tau^+\tau^-$ mode a multivariate analysis needed to handle the background

 $R_{T\mu}(Y(1S)) = 1.005 \pm 0.013 \pm 0.022$

Improved respect to CLEO:

 $R_{\tau\mu}(Y(1S))$: 1.02 ± 0.02 (stat.) ± 0.05 (syst.)]

PRL98, 052002 (2007)

Direct search for Dark sector

arXiv: 0908.2821 [hep-ex]

Direct search for Dark sector

Full BaBar dataset 536fb⁻¹

N. Arkani-Hamed et al. PRD 79, 015014 (2009)

- New "dark force" with gauge boson W'~ GeV while the dark matter particle is ~TeV scale
- Signature: 4 leptons (4e,2e+2μ,4μ)
 with zero total charge carrying the full
 beam momentum where the two
 dilepton invariant masses are equal
 (bkg from 4-lepton QED processes)
- Look for a narrow peak in the mass distribution of W' in the mass range from 0.24 and 5.3 GeV
- Signal extraction by a cut-and-count analysis in bins of m_W (10MeV step)

No significant signal observed-->Set UL (90%CL)

$$\sigma(e^+e^- \to W'W' \to l^+l^-l'^+l'^- < (25-60) \text{ ab}$$

Conclusions

- No significant signal of a light scalar particle (e.g. CP-odd Higgs) in radiative decays of Y(3,2S) $\rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+ \mu^-$ and Y(3S) $\rightarrow \gamma A^0$, $A^0 \rightarrow \tau^+ \tau^-$, on dipion transitions of Y(2S) \rightarrow Y(1S) $\pi \pi$, Y(1S) \rightarrow γ Invisible, and on indirect searches through a test of lepton universality
 - Set upper Limits that rule out some parameters space of New physics Models
- No evidence $\Upsilon(3S) \to \Upsilon(1S) \pi \pi$, $\Upsilon(1S) \to (\gamma)$ Invisible
 - Constrains models with light dark matter
- No evidence for the process e⁺e⁻ → W'W' → I⁺ I⁻ I'⁺ I'⁻
 - No evidence for "dark forces"
- New BaBar results are expected so stay tuned!

Direct search for Dark sector

- Models motivated by the galactic γ ray and positron emission from the galactic center (INTEGRAL, PAMELA, ATIC, etc...)
- New "dark force" with gauge boson W_D~ GeV while the dark matter particle is ~TeV scale
- Coupling to leptons due to small mixing SM and Dark sector
- Decays to lepton pairs (e⁺e⁻, μ⁺μ⁻) but not pp because W_D is bellow pp threshold (2GeV)

Look for the exclusive pair production of a narrow resonance at B-factories

Generic dark boson Non-abelian structure

N. Arkani-Hamed et al. PRD 79, 015014 (2009)

Scan for peaks in the E_{γ} distribution in steps of half the resolution (307 scans in total)

In a range corresponding to 4.03<M(A₀)<10.10GeV

BABAR experiment

- e⁺e⁻ machine located at SLAC (IR2)
- Operates at the Y(4S) resonance (10.58GeV)

• Use asymmetric beams, Y(4S) is boosted in the lab frame (γ β~0.56) to separate B decay vertices along the z axis

Motivation

ZOOM

Fit for m_{A0} =7.3 GeV: N_{signal} =119±71 events, 1.7 σ significance (stat only)

(yield and shape float.)

Fit for ma0=7.3 GeV: Nsignal=119±71 events, 1.7σ significance (stat only)

Channels used

Look for a peak in m(I+I-)spectrum

$$A^0 \rightarrow \mu\mu$$

$$A^0 \rightarrow \tau \tau$$

Look for peak in the "missing mass"

A⁰ →invisible

 Two single trigger lines were used for this analysis -> the analysis was performed in two regions:

```
Low Energy region 2.2 < E*\gamma < 3.7 High Energy region 3.2 < E*\gamma < 5.5
```

 Use a limited number of variables (very low-multiplicity events): photon quality, fiducial selection of primary photons, veto extra particles in the event (no charged particles, cuts on the E of a second photon,...), IFR veto (detects missing photons on the EMC)

122 x 10⁶ Y(3S) decays

- $A^0 \rightarrow \chi^0 \chi^0$ can be dominant decay in some NMSSM scenarios with a light neutralino (LSP)
- Search for one energetic photon in the final state: $Y(3S) \rightarrow \gamma A^0$ and look for a bump in $E^*\gamma$ or missing mass
- Selection based on photon quality and fiducial requirements and the presence of additional detector activity in the event
- Two different single-photon trigger lines used, naturally split low and high E_γ regions

$$E_{\gamma}^* = \frac{m_{\Upsilon}^2 - m_{A^0}^2}{2m_{\Upsilon}}$$

Main background comes from:

- e^+e^- → $\gamma\gamma$ (High energy region)
- $e^+e^- \rightarrow e^+e^- \gamma$ (Low energy region)

- Fit to the missing mass squared: $m_x^2 = m_{Y(3S)}^2 2E^* \gamma m_{Y(3S)}$ (steps 0.1GeV)
- Extract signal yields as a function of m_A , in the mass range $m_A < 7.8 \text{GeV}$

Low energy region $2.2 < E*\gamma < 3.7$

High energy region $3.2 < E*\gamma < 5.5$

