Search for Pair Production of Scalar Leptoquarks with the CMS Experiment

Paolo Rumerio, University of Maryland Kruger 2010 – Workshop on Discovery Physics at the LHC December 9th, 2010

Overview

- The CMS detector in brief
- Introduction to leptoquarks (LQ)
- Search for pair production of 1st and 2nd generation LQs
 - In the final states eejj (33 pb⁻¹) and μμjj (34 pb⁻¹)
 - Analysis strategy
 - Data vs. Monte Carlo at pre-selection level
 - Backgrounds
 - Final selection
 - Results
- Conclusions

Introduction to Leptoquarks

- An apparent symmetry between quark and lepton generations of the Standard Model (SM) is unexplained within the SM itself. This symmetry may imply the existence of a more fundamental theory interrelating the SM quarks and leptons (GUT, Technicolor, Composite models, ...)
 - Leptoquarks (LQs) naturally appear in such theories
- LQs are conjectured particles that couple to a lepton-quark pair and carry SU(3) color charge, fractional electric charge, baryon and lepton numbers
- LQs can be scalar or vector particles. Scalar LQs are considered in this talk.

- Experimental limits on lepton number violation, flavor-changing neutral currents, and proton decay favor (for LQ masses directly accessible at the current colliders) three generations of LQs with no inter-generational mixing.
- In the model considered here, a LQ couples to a lepton and a quark from only one SM generation.

LQ Production at the LHC

 In hadron-hadron collisions, scalar LQs are pair-produced mainly through gluon-gluon fusion and quark-antiquark annihilation.

- At the LHC, gluon-gluon fusion is the dominant production mechanism, and is independent of the LQ-I-q coupling (λ)
 - Single LQ production becomes comparable at LQ masses above the reach with the 2010 data
- Results from low energy experiments and HERA collider restrict λ to be small ($\lambda < \approx \lambda_{EM} \approx 0.3$) for LQ masses currently accessible at the LHC
 - LQ relative width $\Gamma_{LQ}/M_{LQ} = \lambda^2/16\pi < 0.2\%$, measurement dominated by detector resolution

Signature of LQ Decays

- unknown parameter
 - BR(LQ \rightarrow |^{+/-} + q) = β
 - BR(LQ $\rightarrow v + q$) = 1- β
- 3 different signatures
 - Iljj: 2 charged leptons + 2 jets
 - lvjj: 1 charged lepton + 2 jets + MET
 - vvjj: 2 jets + MET
- 3 LQ generations
 - 1st generation: l=e
 - 2^{nd} generation: $I=\mu$
 - 3^{rd} generation: $I=\tau$
- In this talk, results of a search for 1st and 2nd generation scalar LQs in the eejj and μμjj channels are presented

Limits from the Tevatron

- The Tevatron most stringent lower limits on the scalar LQ mass are set by D0 and based on 1 fb⁻¹ of integrated luminosity. For β = 1:
 - M_{LQ} > 299 GeV for 1st generation
 - M_{LQ} > 316 GeV for 2nd generation

(Results for $\beta < 1$ are improved by combining the IIjj, Ivjj and vvjj limits)

CMS Analysis Strategy

- Look for a striking experimental signature: two high-p_T charged leptons and two high-p_T jets
- Trigger: robust and efficient lepton triggers
- Event selection:
 - At least 2 isolated high- p_T leptons, at least 2 high- p_T jets
 - A lower cut on M_{\parallel} to remove Z+jets bkg
 - $S_T = p_T(I1) + p_T(I2) + p_T(j1) + p_T(j2) > f(M_{LQ})$
- Background estimate:
 - Backgrounds containing vector bosons are estimated using MC samples
 - Z+jets and ttbar are the dominant backgrounds
 - MC normalization and systematic uncertainty on the background estimate are assessed by comparing data and MC
 - The small QCD background is determined from data

Electron, Muons and Jets

- Electrons:
 - Electromagnetic clusters with consistent shower shape
 - Spatially matched to a reconstructed track in η and φ
 - Isolated in calorimeter and tracker
- Muons:
 - Tracks in muon system matched to tracks in inner tracking system
 - Isolated in tracking system and calorimeter
 - More than 10 hits in silicon tracker
 - transverse impact parameter < 2mm</p>
- Jets:
 - Reconstructed using calorimeter information
 - Anti-kT algorithm with distance parameter R=0.5
 - Jet energy corrections derived from MC are applied
 - Applied residual data-based energy corrections (p_T balance in di-jet events)

eejj

Pre-Selection

- Select the 2 leading (in p_T) electrons p_T>30 GeV, |η|<2.5
- Select the 2 leading (in p_T) jets p_T>30 GeV , |η|<3</p>
- ΔR(e,j) > 0.7
 - M_{ee} > 50 GeV
 - S_T (scalar sum of pT of selected electrons and jets) >250 GeV

- Select the 2 leading (in p_T) muons p_T>30 GeV, |η|<2.4 (2.1)</p>
- Select the 2 leading (in p_T) jets p_T>30 GeV , |η|<3</p>
- ΔR(μ, μ) > 0.3
- M_{µµ}>50 GeV
- S_T (scalar sum of pT of selected muons and jets) >250 GeV

μμ

Data/MC at Z boson peak (80<M_{II}<100 GeV) after pre-selection is

1.20 ± 0.14 for eejj and 1.28 ± 0.14 for μμjj

 Given the good agreement in the shape of the kinematic distributions of data and MC (see next slides), the Z+jets MC has been rescaled by such amounts (in all plots and tables in this talk)

Muons after Pre-selection

μμϳϳ

2 muons P_T>30 GeV, $|\eta|$ <2.4 (2.1) 2 jets P_T>30 GeV , $|\eta|$ <3 $\Delta R(\mu, \mu)$ > 0.3 , M_{µµ}>50 GeV, S_T>250 GeV

THVERSIA

2 muons P_T>30 GeV, $|\eta|$ <2.4 (2.1) 2 jets P_T>30 GeV , $|\eta|$ <3 $\Delta R(\mu, \mu)$ > 0.3 , M_{µµ}>50 GeV, S_T>250 GeV

μμϳϳ

THVERSIA

 S_T = scalar sum of the pT of the 2 selected leptons and 2 selected jets

Backgrounds

- Z+jets
 - Determined from MC rescaled by the data/MC ratio at the Z peak at pre-selection
 - A systematic uncertainty is derived from the uncertainty on the above ratio (dominated by the statistics on the data → slide 11)
- ttbar
 - The CMS measurement σ(ttbar) = 194 ± 72 (stat.) ± 24 (syst.) ± 21 (lumin.) is fully consistent with next-to-leading order predictions
 - The ttbar background is determined from MC without any rescaling
 - The sum in quadrature of the above uncertainties (41%) is used as a systematic uncertainty on the MC estimate of this background
- Small contribution from other backgrounds containing vector bosons is determined from MC (W+jets, di-boson, single-top)
- QCD background is determined from data and found to be negligible
 - eejj: fake rate method applied to data sample with 2 isolated electromagnetic clusters and 2 jets
 - μμjj: using control data sample of same-sign di-muon events

Final Selection

- M_{II} (di-lepton invariant mass) and S_T (scalar sum of pT of the 2 selected leptons and 2 selected jets) are the two most powerful variables in discriminating signal and background
- M_{II} and S_T have been optimized using a Bayesian approach to minimize upper limit (*) (systematic uncertainties treated as nuisance parameters) in a 35 pb⁻¹ scenario

-
$$M_{ee}$$
 > 125 GeV and $M_{\mu\mu}$ > 115 GeV

- $S_T > f(M_{LQ})$ - see tables in next two slides

(*) Optimization for discovery produces similar results

400 500 600 700 800 900 1000 10 100 200 300 400 500 600 700 800 S_{τ} (GeV) M_{ej} = electron-jet inv. mass (2 entries/event). Of the 2 ways to combine 2 electron and 2 jets – the combination with minimum mass difference is chosen

2 electrons P_T>30 GeV, |η|<2.5; 2 jets P_T>30 GeV, |η|<3; ΔR(e,j)>0.7; M_{ee}> 125 GeV; S_T>f(M_{LQ})

M _{LQ}	MC Signal Samples		Monte Carlo Background Samples				Events
(S _T Request)	Selected	Acceptance	Selected Events in				in
[GeV]	Events	×Efficiency	$t\bar{t}$ + jets	Z/γ + jets	Others	All	Data
$250 (S_T > 400)$	43.8 ± 0.2	$0.380 {\pm} 0.002$	1.1 ± 0.06	1.3 ± 0.1	$0.14{\pm}0.02$	2.5 ± 0.1	1
$300 (S_T > 470)$	17.3 ± 0.1	$0.430 {\pm} 0.002$	$0.44{\pm}0.04$	$0.75 {\pm} 0.07$	$0.10 {\pm} 0.02$	1.3 ± 0.1	1
$340 (S_T > 510)$	$8.88 {\pm} 0.04$	$0.469 {\pm} 0.002$	$0.27 {\pm} 0.03$	$0.56{\pm}0.06$	$0.08 {\pm} 0.02$	$0.91{\pm}0.08$	1
$400 (S_T > 560)$	$3.55 {\pm} 0.02$	$0.522 {\pm} 0.002$	$0.17{\pm}0.02$	$0.41 {\pm} 0.05$	$0.06 {\pm} 0.02$	$0.63 {\pm} 0.06$	1
$450 (S_T > 620)$	$1.70 {\pm} 0.01$	$0.539 {\pm} 0.002$	$0.10 {\pm} 0.02$	$0.28{\pm}0.05$	$0.02 {\pm} 0.01$	$0.41 {\pm} 0.06$	0

December 9, 2010

 $M_{\mu j}$ = muon-jet inv. mass (2 entries/event). Of the 2 ways to combine 2 muons and 2 jets – the combination with minimum mass difference is chosen

2 muons P_T>30 GeV, $|\eta|$ <2.4(2.1); $\Delta R(\mu, \mu)$ >0.3; 2 jets P_T>30 GeV, $|\eta|$ <3; $M_{\mu\mu}$ >115 GeV; S_T>f(M_{LQ}) GeV

M _{LQ}	S _T	Z/γ^* +jets	$t\overline{t}$	Other Bkg	All Bkg	Data	S	ϵ_S
250	400	1.92 ± 0.03	1.60 ± 0.08	0.05 ± 0.01	3.57 ± 0.09	3	51.5 ± 5.2	0.437 ± 0.003
300	449	1.53 ± 0.03	0.98 ± 0.06	0.04 ± 0.01	2.54 ± 0.07	3	21.3 ± 2.1	0.518 ± 0.004
340	530	0.79 ± 0.01	0.34 ± 0.04	0.01 ± 0.00	1.14 ± 0.04	1	9.8 ± 1.0	0.508 ± 0.003
400	560	0.67 ± 0.01	0.27 ± 0.03	0.01 ± 0.00	0.94 ± 0.03	1	4.0 ± 0.4	0.578 ± 0.004
450	620	0.49 ± 0.01	0.16 ± 0.02	0.01 ± 0.00	0.66 ± 0.03	0	1.9 ± 0.2	0.600 ± 0.004

December 9, 2010

Systematic Uncertainties

- Dominant systematic uncertainties:
 - Luminosity: 11%
 - Di-lepton selection/recostruction efficiencies: 10% for both channels
 - Jet energy scale: 5%
 - Electron energy scale: 1% (3%) in barrel (endcaps)
 - Muon momentum scale: 1%
- Their effect on signal and background is shown in the table
- Some do not apply to the background estimate

Channel	Effect on N _{signal}	$\frac{Effect \ on}{N_{background}}$
eejj	15%	25%
μμϳϳ	15%	25%

 Because of the systematic error determined from data-MC comparison (21% for eejj and 25% for μμjj)

Upper Limits on LQ Pair Production Cross Section

- The data are consistent with SM background expectation
 - upper limits on the LQ cross section are set using a Bayesian approach (systematic uncertainties included in the calculation)

Lower Limits on M_{LQ}

 By comparing the upper limits to a theoretical calculation of the LQ cross section, the existence of first- and second-generation LQs with mass below 384 and 394 GeV, respectively, are excluded for β=1:

- D0 results combine the limits obtained using the IIjj and Ivjj (and vvjj in left plot)
 - For β = 1, D0 sets M_{LQ} > 299 and 316 GeV for first- and second-gen.

Paolo Rumerio, Maryland

Conclusions

- Searches for pair production of first- and second-generation leptoquarks at CMS have been performed
 - in the channels with 2 charged leptons and 2 jets
- The full 2010 dataset has been used: just short of 35 pb⁻¹
- We set lower limits on the LQ mass that significantly improve the Tevatron (D0) results over a large range of β values (> 0.4)
- For β=1, we exclude
 - First-generation LQ with masses below 384 GeV
 - Second-generation LQ with masses below 394 GeV
- Publication drafts for the eejj and μμjj channels are being finalized
- The analyses of the evjj and μvjj channels are being pursued

BACKUP SLIDES

Limits from HERA

(electron-proton)

Systematic Uncertainties

een	

μμϳϳ

Systematic	Magnitude	Effect on	Effect on
Uncertainty	[%]	$N_{\rm signal}[\%]$	$N_{\text{AllBkg}}[\%]$
Data-Driven Uncertainty	-	-	21
Jet Energy Scale	5	3	11
Elec. Energy Scale Barrel/Endcap	1/3	1	5
Electron Pair Reco/ID/Iso	10	10	-
MC Statistics	See Table 1	1	6
Integrated Luminosity	11	11	-
Total	-	15	25

Systematic	Magnitude	Effect on	Effect on
Uncertainty		Signal	N_{AllBkg}
JES	$\pm 5\%$	$\pm 2\%$	—
JES and Data Background Est.	—	—	$\pm 25\%$
Muon Momentum Scale	$\pm 1\%$	$\pm 1\%$	$\pm < 0.5\%$
Muon Pair Reco/ID/Iso	$\pm 10\%$	$\pm 10\%$	$\pm < 0.05\%$
Integrated Luminosity	$\pm 11\%$	$\pm 11\%$	—
Total		$\pm 15\%$	$\pm 25\%$

Bayesian Upper Limit

- 95% C.L. upper limit on the LQ pair production cross section σ is calculated using a Bayesian approach

