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First LHC collisions at 3.5 TeV
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30 March 2010 – around 1pm 
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The LHCb experiment at CERN
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The LHCb experiment
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LHCb has:

 Efficient trigger for many B decays 

topologies

 Efficient particle identification

 Precision vertexing, movable Vertex 

Locator

 Good tracking and mass resolution

 Angular coverage 10÷250 mrad (V) 

and 10÷300 mrad (H)

Physics scope:

 Precision study of CP violation and look for New Physics

 Study of rare b and c decays

 Complementary to General Purpose Detectors (ATLAS/CMS) 

 In certain sense as a forward GPD

See LHCb Status, First Physics and 
Discovery Potential, O. Steinkamp

h
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LHCb nominal running conditions
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Instantaneous 

Luminosity

average 2*1032cm-2/s 
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Bunch revolution

frequency:

11.245 kHz

Bunch transverse emittance

eN = e * g = 3.75 mm normalized emittance

for beam energy E = 7 TeV

“beta star” = 30m

after beam squeezing

Colliding bunches

populations:

~1.15*1011 ppb

Geometrical factor

e.g. LHCb Crossing angle 

-673 mrad

Number of colliding

bunches per beam

2622

 1 vertex / bb interaction (Pileup average)

 0.4 visible pp interactions per bunch crossing in LHCb acceptance (Mu average)

 Foresee to collect 2 fb-1/year (Integrated Luminosity)
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LHCb trigger architecture
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m, m+track, mm
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 Level-0 Hardware Trigger 40 MHz  1 MHz

 Search for high-pT , m, e, g, hadron candidates

 High Level Software Trigger Farm

 HLT1: Add impact parameter and lifetime cuts

 HLT2: Global event reconstruction + selections

 Processing time available O(20 ms)

 Physics output rate 2 kHz – 2.5 kHz

 HLT needs operational flexibility

 Trigger Configuration Key (TCK) to distribute the 

configuration to 1000 nodes simultaneously when 

optimizing parameters during LHC fill

 Allowed for easy luminosity following also in extreme 

conditions during 2010 
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LHCb readout system
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L0 trigger

L0 
Trigger

312 ROBs

• 24 inputs@1.6 Gb/s

• 4 outputs@1 Gb/s

~50 TB with max 300 MB/s

2 – 2.5 kHz rate

Event Size of ~60 kB

3000 GbE ports

35 GB/s

50 subfarms of ~19 nodes

 O(1000) nodes

5000 optical/analog links

~4 Tb/s

Offline
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Routine operations at LHCb
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24/7 Shift Leader  + Data Manager in LHCb Control Room + sub-system piquets on call
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Centralized Control System
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All LHCb controlled with two graphical user interface panels – PVSS-II

 High level of automation  Shift Leader supervises and acts if needed

Access and control to every control 

system of each sub-detector

Control of every DAQ sub-system

All HV/LV 

channels

Safety 

systems

LHC communications

Run information

LHCb main stateTrigger Configuration

VELO motion: 

only in 

PHYSICS!
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Experimental Conditions Monitoring
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Complete study framework which involves:

 Background monitoring

 Beam monitoring

 Careful implementation to be prepared in 

case of bad background

 No bad background seen so far!

Instantaneous damage

Beam Interlock

Background

. . . . . . . …………Trigger rates……………………

. . . . . . . ………..Poor data quality………………..

. . . . ….Single event upsets…………………..…..

…………..……Accelerated aging……….………..

…………………Long-term damage……………....

Online monitoring Accumulated dose

Beam incident………………....…….scraping……………....halo/beam gas/…
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Luminosity
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Instantaneous damage
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Helped machine commissioning 

and increase LHCb efficiency

 Optimize Luminosity / Background
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Running in 2010 – extreme conditions
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Reached ~80% of designed LHCb instantaneous luminosity with 8 times less colliding bunches!

 More interactions per crossing

 Bigger event size

 More vertices per collision
LHCb max inst lumi

~170*10^30 cm-2/s with:

Nbb = 344 colliding bunches

b* = 3.5m beta star

E = 3.5TeV energy

eN= 2.4 mm normalized emittance

Operational objective: explore LHCb physics potential in extreme running conditions which are 

very different from nominal conditions!

 Tune detector, trigger and readout performance

Mostly focused on LHC machine 

commissioning, LHCb had to face 

with preparations without knowledge 

about the ultimate parameters

 expert availability 24/7

 adaptability readout system

 flexibility trigger 

 upgrades “on the fly”
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Running in 2010 – availability
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Physics Start Time

0 2 4 6 8 10 12

Sat Day (7 - 21)

Sat Night (21 - 7) 

Sun Day (7-21)

Sun Night (21 - 7)

Weekend Physics Start Time
89 physics fills, total of 28 days of STABLE BEAMS

 Massive workload!

 Very limited day time to commission properly 

trigger and tune detector for each luminosity step
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July August September October

?
!

Running in 2010 – flexibility
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LHCb Design Specs

“average number of visible pp
interactions per bunch

crossing in LHCb acceptance”

Operational consequences of high-Mu (~2.5):
 Increases readout rate per bunch crossing  bandwidth limitation

 Increases event size  bandwidth limitation

 Number of tracks and event complexity  processing time increase

 High particle flux Trigger strategy  Global Event Cuts

LHCb Design Specs

“# of Primary Vertices at L0”

Mu
e1

Mu
pileup





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Running in 2010 with high-Mu
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Example of an event with high-Pileup in LHCb

beam1 beam2

 Average distance between:

2 PV: 56.0 mm

3 PV: 23.5 mm

4 PV: 12.9 mm

5 PV:  8.3 mm

Compared to average B decay length of O(10mm)
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LHCb 2010 trigger strategy - I
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 Explore LHCb physics potential in extreme (for LHCb) running conditions  

Early running conditions

Few colliding bunches 

= 

Low L0 rate 

= 

Less CPU consumption

Choice to let event complexity increase, 

following Mu by machine

= 

Increase # events/crossing (Mu)

= 

Increase # vertexes at L0 (Pileup) 

= 

Increase Luminosity

Keep loose trigger

Commission Reconstruction and put it in operations

Early running strategy

Read out every crossing

Simply search for 1 VELO track (MB)

When reached the output bandwidth

rate limit on MinimumBias events  applied

(1kHz then 100Hz)
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LHCb 2010 trigger strategy - II
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Late running conditions

Many colliding bunches 

= 

Higher L0 rate 

= 

More CPU consumption

Still follow Mu from machine, 

but cut harder!

= 

Increase Mu

=

Increase Pileup

= 

Increase Luminosity

= 

Reduce number of very large events 

 LHC machine kept increasing number of colliding bunches AND Mu …

Global Event Cut (GEC)  Trigger 

Configuration Keys (TCK)

 High priority to m triggers (Bs mm)

 Check PVs are distinguishable at high-Mu

multiplicity vs # PVs @ HLT1 

Late running strategy

Earlier stage

Later stage

Cutting at mult < 900 

=

reduce number of very large 

events, but still explore all the 

physics potential

Cutting at mult < 450 

=

reduce number of large 

events, but still keep some 

events with large #PVs, but 

lower multiplicity
 # PVs ∝ SPD multiplicity
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LHCb trigger strategy – Considerations
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1. Distribution of # PVs at HLT1 at Mu ~2

Most of the events are with 1 to 4 PVs

2. multiplicity distribution for a MinimumBias

event and a particular resonance

A generic event will sum the multiplicity of a MB event 

and the one from the signal  eventually, cutting at 450 

at high-Mu means wasting luminosity

For some signals, cutting at higher energy 

doesn’t enrich the sample 

 doesn’t change the ratio of fraction of MB and 

fraction of signal events which is selected 

3. Ratios of fraction 

of MB and fraction of  

signal yields

hadrons

Et(hadron) cut (MeV)
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An “operational” trigger
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Luminosity (t0) ~ 1.5E32

Mu (t0) ~ 2.5

Trigger lifetime (t0) ~ 99%

L0 Rate (t0) ~ 350 kHz

HLT Rate (t0) ~ 2.5 kHz

Legend:

Blue: L0 Trigger Rate

Green: Trigger lifetime

Light  Blue: Mu

Brown: Luminosity

When a “lower” value of Mu is reached throughout a fill:

1. new Trigger Configuration Key is applied

2. new run is started

 Same behavior with two different configuration at two

different running conditions
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Luminosity measurement
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Two methods to directly determine Luminosity

Van der Meer method

- based on beam separation scans

- moves beams in horizontal and vertical plane

Completely automatized with LHC machine

 uses MinimumBias trigger

Beam gas imaging method

- based on beam-gas vertex reconstruction

onCrossSecti*LuminosityeTriggerRat 

LHCb “Beam gas trigger”:

- LHCb Luminous region 

- beam 1 spot and beam 2 spot 

- effective crossing angles and beam angles

- debunching effects

Beams Positions Vertical plane

Beams Positions Horizontal plane

MB trigger rate
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Luminosity measurement

23

First result from both method combined gave CrossSection = 61.6 mb ± 6.2

 More studies are ongoing from more recent scans

CrossSection of event with 

two or more VELO tracks

BeamGas method for different fills
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Detector Status Overview in 2010
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%

Detector hardware behaved extremely well through 2010, few problems which never had impact on LHCb operations.
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LHCb global operational performances
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90% efficiency: 

- detector HV > 99.5% fully ON

- all detectors included

- VELO fully closed

- trigger and DAQ deadtime included!

Luminosity difference with ATLAS/CMS: 

- Known geometrical factor due to 

crossing angle + magnetic field: Up to 9% 

reduction with Magnet Field “DOWN”

 > 50% of annual lumi in this condition

- Other effects are under study 

(Normalization factor, b* / waist effect, 

longitudinal scan)
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Detector Safety System 
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94%

37.7 pb-1 recorded
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Upgrade of EFF “on the fly”
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“Low-end (old) farm nodes”

“High-end (new) farm nodes”

System Latency (Transmission+CPU+Event Request) [ms]

Added 400 nodes in less than 3 days in order to double the FARM capacity

 configuration time down to 6 minutes for 1000 nodes

 mixture of farm nodes  optimization of events readout and system latency

 event processing time ~15 ms for fast nodes, ~30 ms for slow nodes

 reached event size of ~70kB at high-Mu (nominal is 35kB!)

Foreseen another upgrade by 400 nodes in the winter shutdown
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Offline computing and reprocessing
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 All LHCb data is being reprocessed on the Grid (20k jobs/day)

 Both event size and CPU time rise with Mu

 Compatible with expectations at nominal Mu (~0.4)

 Need to adapt continuously to changing running conditions

 More than 2000 CPU years in 6 months

 Equally share between MonteCarlo and Analysis+Reconstruction

 About ~400 TB of physics RAW data collected

 Distributed immediately to Tier1s

Reconstruction Time (RAW data) vs m

Event Size (RAW data) vs m
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Offline computing and reprocessing
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 115 sites used

 21 countries

 Analysis: 52%

 Simulation: 32%

 Reconstruction: 8%

 Overall 82% success rate

 Main cause of failures (18%): job exceeding 

CPU time limit or user mistakes

 Currently using Tier1s for Analysis 

 Soon use large Tier2s for Analysis (and Reconstruction) as well!
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From the detector point of view:

 Upgrade of Event Filter Farm to reach O(1500) nodes

 bandwidth limitation: 70kB event size @ 1 MHz

 load balancing and additional links will be needed

 up to Mu = ~2.5, detector operations seems feasible and possible

 LHCb designed to run for 10 years at 2-5*1032 cm-2/s (operational stability)

From the trigger point of view:

 Cutting on the SPD at high-Mu is not necessarily beneficial

 evaluate the use of Global Event Cuts

 CPU time/event will have to improve in order to do more in the same amount of time

 Some physics channels don’t gain significantly  at Mu > ~2.5

LHCb future running strategy:

 maximum instantaneous luminosity of 2-5*1032 cm-2/s

 maximum Mu of 2.5

 follow increase of number of bunches by LHC:
 for 50ns bunch scheme up to ~1400 colliding bunches

 eN = 2.4um, Ni = 1.6*1011 ppb

31

Plans for detector operations in 2011
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LHCb future running strategy
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Luminosity leveling:

 “simply” displacing beams

 allow selecting favorite value of Mu

 allow keeping the value of Mu constant throughout the whole fill

Many feasibility tests performed with the machine

 Up to now no sign of problems

 Should not affect other 3 experiments

Y (IP  t=0)

LHCb instantaneous lumi

ATLAS/CMS instantaneous lumi

 keep increasing number of bunches, gradually decreasing number of interaction per crossing

ATLAS/CMS

LHCb
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LHCb future running strategy

33

 Three phase space strategy: number of bunches, instantaneous luminosity, Mu
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Conclusions

34

LHCb spent an incredibly exciting year collecting about 37pb-1 of recorded data 

with an efficiency above 90%.

 The challenges of a first year of running of a brand new experiment, in extreme 

conditions have been overcome without showstoppers and being able to follow the 

luminosity growth together with the GPDs

 The main aim remained however to exploit and explore the physics potential of the 

detector at extreme operational conditions

 The trigger strategy changed over time to accommodate the changes in running 

conditions and to try to expand our physics potential so that we could define LHCb as a 

forward GPD

 The detector performances are excellent and the physics potential in the field of B 

physics is world class

 Many months of success were lived and many years of success are ahead of us



Kruger2010, South Africa, 7/12/10 F. Alessio, CERN

Backups
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LHCb particularities
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B

On injection line of beam2

Magnet spectrometer

Movable Vertex Locator

Displaced interaction point (~11.5m)

Complex background

Luminosity reduction due to magnet field

Safety (and defense)

Centralized readout system 

Centralized global operations

2 stage trigger
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Online 35 kB/evt@2kH = 70 MB/s or 

2 GB file(~60 kevts) / 30sOffline
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LHCb Data and Process flow
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Data Quality

LHCb Online Presenter:

 Online Data Quality performed by Data Manager

 Full data taking with ROOT interface

 Alarms associated

 Interfaced with Databases

 Spot problem “live” and correct them!
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VELO allowed IN

Automation as function of LHC mode 

 Reduced 19 LHC states into 8 

LHCb states by regrouping similar 

states

 HV & LV of each sub-detector 

and data taking is controlled via 

LHCb state machine

 New LHCb State is proposed and 

simply acknowledged by shifter 

(cross check)

 Movable devices only allowed to 

move during the collision phase

 Next slide

 Reliability and completeness to 

ensure to be in the right state at 

the right moment

Centalized Control System
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VELO allowed to move towards the beam only when Safe Stable Beam flag is declared

 only during collisions, closest strip at ~7mm.

VELO Safety and Motion

STABLE BEAMS declared

Online monitoring of beam vertices and beam movements 

gives ok to move in (wait for ~400 vertices)

Step 2 is repeated 3 times for 3 different positions 

(± 29mm, ± 10mm, 0)

VELO closed!  Full LHCb datataking

Procedure is semi-automated, shifter only acknolewdges

the motion and cross-check the information via Interface 

panel

 Hard limit due to motion system: 3 min.

 Fastest closing procedure: ~4.5 min.

 Safety procedure accounts for only ~2.3% of entire 

LHCb inefficiency. Foreseen to decrease even more as 

procedure become more automated!
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L0 bandwidth

41

L0 bandwidth calculation comes from output of Readout Boards: 

 450 Bytes at 1 MHz = 450MB/s x 312 ROBs = ~140GB/s = ~1.1 Tb/s

 High-mu events have higher size and rate  Occupancies in detectors play a role 

 load-balancing of channels in Readout Boards

 add number of Readout Boards

 add CO2 in RICH2 to decrease event size by quenching scintillation light

RICH1

RICH2

HCAL

MUONAdd CO2

Load balancing
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Luminosity discrepancy
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Systematic luminosity difference IP1/5 and IP8 – Not understood

1. Geometrical factor 

July – August: LHCb 2x270 mrad 8-9%    as compared to Atlas/CMS with 0mrad

B up+aext:   LHCb 2 x  (270 – 100) mrad 3% as compared to Atlas/CMS with 200 mrad

B down+aext :   LHCb 2 x  (270 + 100) mrad 9% as compared to Atlas/CMS with 200 mrad

2. Normalization – work starting up to normalize via Alice

3. b* / Waist effect?   Observations of strange geometrical effects during scans

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1170 1220 1270 1320 1370 1420

B field down

LHCb Ratio with ATLAS/CMS

Luminosity
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Ageing
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LHCb detector built for 10 years @ 2x1032 cm-2s-1

 Lumi per bunch of 7.6x1028 cm-2 s-1

 How about >>2x1032 cm-2s-1 with 1400 bunches??

 5x1029 cm-2s-1/bunch

• VELO

– No surprises

– No sign of bulk damage, some effects compatible with surface damage

– Worst sensor shows factor of three increase in current consumption

• Some sensors actually reduced current consumption

• ST

– No surprises

– Type inversion in TT expected next year  cooling

– Observed increase of about 4.5 mA in central region of IT completely in agreement with model at 40 pb-1 

eq. to 2E5s @ nominal luminosity

Normal 

zone

Recovery

No abnormal ageing observed in situ in any detector
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Ageing
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• Outer Tracker

– Ageing measured and modeled in vitro – potentially serious, 

model has to be confirmed 

– Two threshold scans performed during the year (half-efficiency 

point)

• August after 1  pb-1

• October after 25 pb-1 
 Analysis ongoing

Ageing model needs validation

Half eff point

Relative gain change July/August
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Primary Vertex Resolution

45

Primary vertex resolutions:

 σx and σy = ~15um

 σz = ~76 um

Special Beam gas trigger in LHCb 

used to determine:

- LHCb Luminous region 

- beam 1 spot and beam 2 spot 

- effective crossing angles and beam 

angles

- debunching

- absolute luminosity measurement 

(LHCb cross-section)  
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HV trips

46

0

2

4

6

8

10

12

14

16

18

20

0

20

40

60

80

100

120

140

160

180

1290 1310 1330 1350 1370 1390 1410 1430 1450

N
u
m

b
e

r 
o

f 
g
a

p
s
 t
ri
p
p

in
g

L
u

m
in

o
s
it
y

Excellent situation, detector hardware behaves properly!

MUON HV trips:
 Muon trips correlated with chambers which were less 

conditioned after production

 Fraction of it due to backsplashes in the upper region of 

the detector for beam2

 No real effect because of high redundancy

 Conditioning in situ

Silicon Tracker HV trips:

 Occurring at rapid luminosity change (when beams are 

brought into collisions

Outer Tracker HV trips:

 Very few

No HV trip affected efficiency considerably

 Accounts for less than 1% of the inefficiencies


