

Operation and Performance of the LHCb experiment

Conference on Discovery of Physics at the LHC, South Africa, 5-10 December 2010

F. Alessio, CERN, Switzerland

on behalf of the LHCb collaboration

Outline

- 1. Introduction to LHCb, readout system and LHCb trigger architecture
- 2. LHCb operational aspects, 2010 running conditions and trigger strategy
- 3. LHCb global performance
- 4. Plans for 2011/2012
- 5. Conclusions

Outline

- 1. Introduction to LHCb, readout system and LHCb trigger architecture
- 2. LHCb operational aspects, 2010 running conditions and trigger strategy
- 3. LHCb global performance
- 4. Plans for 2011/2012
- 5. Conclusions

LHCh The LHCb experiment at CERN Overall view of the LHC experiments. 311311313 LHC - B Point 8 CERN ATLAS Point 1 ALICE Point 2 CMS Point 5 SPS ATLAS LHC - B ALICE LEP/LHC CMS

E540 - V10/09/9

- \rightarrow 1 vertex / bb interaction (Pileup average)
- → 0.4 visible pp interactions per bunch crossing in LHCb acceptance (Mu average)
- → Foresee to collect 2 fb⁻¹/year (Integrated Luminosity)

LHCb trigger architecture

 \rightarrow Level-0 Hardware Trigger 40 MHz \rightarrow 1 MHz

Search for high-p_T , μ , e, γ , hadron candidates

→ High Level Software Trigger Farm

- ✓ HLT1: Add impact parameter and lifetime cuts
- HLT2: Global event reconstruction + selections
- Processing time available O(20 ms)
- Physics output rate 2 kHz 2.5 kHz

\rightarrow HLT needs operational flexibility

- Trigger Configuration Key (TCK) to distribute the configuration to 1000 nodes simultaneously when optimizing parameters during LHC fill
- Allowed for easy luminosity following also in extreme conditions during 2010

Outline

- 1. Introduction to LHCb, readout system and LHCb trigger architecture
- 2. LHCb operational aspects, 2010 running conditions and trigger strategy
- 3. LHCb global performance
- 4. Plans for 2011/2012
- 5. Conclusions

24/7 Shift Leader + Data Manager in LHCb Control Room + sub-system piquets on call

Kruger2010, South Africa, 7/12/10

Centralized Control System

All LHCb controlled with two graphical user interface panels – PVSS-II \rightarrow High level of automation \rightarrow Shift Leader supervises and acts if needed

Kruger2010, South Africa, 7/12/10

LHCh

Experimental Conditions Monitoring

Helped machine commissioning and increase LHCb efficiency

- **Background monitoring**
- Beam monitoring
- Careful implementation to be prepared in \rightarrow case of bad background
- No bad background seen so far! \rightarrow

Machine setting

Peam incident......halo/beam gas/...

Beam characteristics

Instantaneous damagePoor data quality.....Single event upsets.....Accelerated aging.....Long-term damage..... **Online monitoring** Accumulated dose

Background

→ Optimize Luminosity / Background

Beam Interlock

Kruger2010, South Africa, 7/12/10

Running in 2010 – extreme conditions

Operational objective: explore LHCb physics potential in extreme running conditions which are very different from nominal conditions!

 \rightarrow Tune detector, trigger and readout performance

Reached ~80% of designed LHCb instantaneous luminosity with 8 times less colliding bunches!

- \rightarrow More interactions per crossing
- → Bigger event size
- \rightarrow More vertices per collision

Mostly focused on LHC machine commissioning, LHCb had to face with preparations without knowledge about the ultimate parameters

- → expert availability 24/7
- → adaptability readout system
- → flexibility trigger
- → upgrades "on the fly"

89 physics fills, total of 28 days of STABLE BEAMS

- → Massive workload!
- → Very limited day time to commission properly trigger and tune detector for each luminosity step

Weekend Physics Start Time

Running in 2010 with high-Mu LHCb Event Display

Kruger2010, South Africa, 7/12/10

LHCh

LHCb 2010 trigger strategy - I

\rightarrow Explore LHCb physics potential in extreme (for LHCb) running conditions

Luminosity measurement

Two methods to directly determine Luminosity

TriggerRat e = Luminosity * CrossSecti on

Van der Meer method

- based on beam separation scans
- moves beams in horizontal and vertical plane

Completely automatized with LHC machine → uses MinimumBias trigger

Beam gas imaging method

- based on beam-gas vertex reconstruction

LHCb "Beam gas trigger":

- LHCb Luminous region
- beam 1 spot and beam 2 spot
- effective crossing angles and beam angles
- debunching effects

Luminosity measurement

First result from both method combined gave CrossSection = $61.6 \text{ mb} \pm 6.2$ \rightarrow More studies are ongoing from more recent scans

Kruger2010, South Africa, 7/12/10

LHCh

Outline

- 1. Introduction to LHCb, readout system and LHCb trigger architecture
- 2. LHCb operational aspects, 2010 running conditions and trigger strategy
- 3. LHCb global performance
- 4. Plans for 2011/2012
- 5. Conclusions

Detector hardware behaved extremely well through 2010, few problems which never had impact on LHCb operations.

LHCb global operational performances

Kruger2010, South Africa, 7/12/10

LHCh

Upgrade of EFF "on the fly"

Added 400 nodes in less than 3 days in order to double the FARM capacity

- ✓ configuration time down to 6 minutes for 1000 nodes
- ✓ mixture of farm nodes → optimization of events readout and system latency
- ✓ event processing time ~15 ms for fast nodes, ~30 ms for slow nodes
- ✓ reached event size of ~70kB at high-Mu (nominal is 35kB!)

Foreseen another upgrade by 400 nodes in the winter shutdown

LHCh

Offline computing and reprocessing

- > All LHCb data is being reprocessed on the Grid (20k jobs/day)
- Both event size and CPU time rise with Mu
- Compatible with expectations at nominal Mu (~0.4)
 - \rightarrow Need to adapt continuously to changing running conditions

More than 2000 CPU years in 6 months

- → Equally share between MonteCarlo and Analysis+Reconstruction
- About ~400 TB of physics RAW data collected
- Distributed immediately to Tier1s

Offline computing and reprocessing

- 115 sites used
 - 21 countries
- Analysis: 52%
- Simulation: 32%
- Reconstruction: 8%

- Overall 82% success rate
- Main cause of failures (18%): job exceeding CPU time limit or user mistakes

- Currently using Tier1s for Analysis
 - → Soon use large Tier2s for Analysis (and Reconstruction) as well!

Outline

- 1. Introduction to LHCb, readout system and LHCb trigger architecture
- 2. LHCb operational aspects, 2010 running conditions and trigger strategy
- 3. LHCb global performance
- 4. Plans for 2011/2012
- 5. Conclusions

Plans for detector operations in 2011

From the detector point of view:

- → Upgrade of Event Filter Farm to reach O(1500) nodes
- → bandwidth limitation: 70kB event size @ 1 MHz
- \rightarrow load balancing and additional links will be needed
- \rightarrow up to Mu = ~2.5, detector operations seems feasible and possible
- \rightarrow LHCb designed to run for 10 years at 2-5*10³² cm⁻²/s (operational stability)

From the trigger point of view:

- → Cutting on the SPD at high-Mu is not necessarily beneficial
- → evaluate the use of Global Event Cuts
- → CPU time/event will have to improve in order to do more in the same amount of time
- \rightarrow Some physics channels don't gain significantly at Mu > ~2.5

LHCb future running strategy:

- → maximum instantaneous luminosity of 2-5*10³² cm⁻²/s
- → maximum Mu of 2.5
- \rightarrow follow increase of number of bunches by LHC:
 - \checkmark for 50ns bunch scheme up to ~1400 colliding bunches
 - ✓ ε_N = 2.4um, N_i = 1.6*10¹¹ ppb

LHCb future running strategy

Luminosity leveling:

- → "simply" displacing beams
- → allow selecting favorite value of Mu
- \rightarrow allow keeping the value of Mu constant throughout the whole fill

Many feasibility tests performed with the machine

- \rightarrow Up to now no sign of problems
- \rightarrow Should not affect other 3 experiments

→ keep increasing number of bunches, gradually decreasing number of interaction per crossing

Kruger2010, South Africa, 7/12/10

F. Alessio, CERN

Y (IP → t=0)

Conclusions

LHCb spent an incredibly exciting year collecting about 37pb⁻¹ of recorded data with an efficiency above 90%.

 \rightarrow The challenges of a first year of running of a brand new experiment, in extreme conditions have been overcome without showstoppers and being able to follow the luminosity growth together with the GPDs

 \rightarrow The main aim remained however to exploit and explore the physics potential of the detector at extreme operational conditions

→ The trigger strategy changed over time to accommodate the changes in running conditions and to try to expand our physics potential so that we could define LHCb as a forward GPD

→ The detector performances are excellent and the physics potential in the field of B physics is world class

 \rightarrow Many months of success were lived and many years of success are ahead of us

Data Quality

🔣 🖻 🛞 🥘 🕾

D)

🗐 Shell - Konsole <5> 🖉 Gedi (LHC - LHCCOM; #3) 🚳 Vision_3: fwDeviceEditorii: 😭 Log Viewer: LHCCOM

Centalized Control System

Automation as function of LHC mode

LHCb

- → Reduced 19 LHC states into 8 LHCb states by regrouping similar states
- → HV & LV of each sub-detector and data taking is controlled via LHCb state machine
- → New LHCb State is proposed and simply acknowledged by shifter (cross check)
- → Movable devices only allowed to move during the collision phase
 - ✓ Next slide
- → Reliability and completeness to ensure to be in the right state at the right moment

VELO Safety and Motion

VELO allowed to move towards the beam only when Safe Stable Beam flag is declared

 \rightarrow only during collisions, closest strip at ~7mm.

VELO closed! → Full LHCb datataking

Procedure is semi-automated, shifter only acknolewdges the motion and cross-check the information via Interface panel

- \rightarrow Hard limit due to motion system: 3 min.
- \rightarrow Fastest closing procedure: ~4.5 min.

→ Safety procedure accounts for only \sim 2.3% of entire LHCb inefficiency. Foreseen to decrease even more as procedure become more automated!

LHCb

гнср

L0 bandwidth

L0 bandwidth calculation comes from output of Readout Boards:

 \rightarrow 450 Bytes at 1 MHz = 450MB/s x 312 ROBs = ~140GB/s = ~1.1 Tb/s

- \rightarrow High-mu events have higher size and rate \rightarrow Occupancies in detectors play a role
 - \rightarrow load-balancing of channels in Readout Boards
 - → add number of Readout Boards
 - \rightarrow add CO2 in RICH2 to decrease event size by quenching scintillation light

гнср

Luminosity discrepancy

Systematic luminosity difference IP1/5 and IP8 – Not understood

- 1. Geometrical factor
 - July August: LHCb 2x270 μ rad \rightarrow 8-9% as compared to Atlas/CMS with 0 μ rad B up+ α_{ext} : LHCb 2 x (270 – 100) μ rad \rightarrow 3% as compared to Atlas/CMS with 200 μ rad B down+ α_{ext} : LHCb 2 x (270 + 100) μ rad \rightarrow 9% as compared to Atlas/CMS with 200 μ rad
- 2. Normalization work starting up to normalize via Alice
- 3. β^* / Waist effect? \rightarrow Observations of strange geometrical effects during scans

Kruger2010, South Africa, 7/12/10

LHCh

Ageing

No abnormal ageing observed in situ in any detector

- LHCb detector built for 10 years @ 2x10³² cm-2s-1
 - → Lumi per bunch of 7.6x10²⁸ cm-2 s-1
- \rightarrow How about >>2x10³² cm-2s-1 with 1400 bunches??
 - \rightarrow 5x10²⁹ cm-2s-1/bunch

VELO

- No surprises
- No sign of bulk damage, some effects compatible with surface damage
- Worst sensor shows factor of three increase in current consumption
 - Some sensors actually reduced current consumption
- ST
 - No surprises
 - Type inversion in TT expected next year \rightarrow cooling
 - Observed increase of about 4.5 mA in central region of IT completely in agreement with model at 40 pb-1 eq. to 2E5s @ nominal luminosity

Excellent situation, detector hardware behaves properly!

MUON HV trips:

→ Muon trips correlated with chambers which were less conditioned after production

→ Fraction of it due to backsplashes in the upper region of the detector for beam2

- \rightarrow No real effect because of high redundancy
- \rightarrow Conditioning in situ

Silicon Tracker HV trips:

 \rightarrow Occurring at rapid luminosity change (when beams are brought into collisions

Outer Tracker HV trips: → Very few

No HV trip affected efficiency considerably \rightarrow Accounts for less than 1% of the inefficiencies

