#### Kruger2010: Workshop on Discovery Physics at the LHC

# Operation and performance of the CMS electromagnetic calorimeter



M. Malberti, Univ. & INFN Milano Bicocca On behalf of the CMS Collaboration



December 7th, 2010

![](_page_1_Picture_0.jpeg)

## Outline

- The CMS electromagnetic calorimeter: description and performance target
- Status and stability
- Reconstruction and performance on low level observables
- Calibration strategy
- Electrons, photons

![](_page_2_Picture_0.jpeg)

#### **CMS Electromagnetic calorimeter**

![](_page_2_Figure_2.jpeg)

| BARREL (EB)  η <1.48                                 | ENDCAP (ΕΕ) 1.48 < η < 3.0                       | PRESHOWER (ES) 1.6< η <2.6            |
|------------------------------------------------------|--------------------------------------------------|---------------------------------------|
| 61200 crystal                                        | 4 Dee's                                          | 4 Planes                              |
| (2.2 x 2.2 x 23 cm <sup>3</sup> ) - 26X <sub>0</sub> | 14648 crystals                                   | Total of 137216 Si strips             |
| 36 Super Modules                                     | (3 x 3 x 22 cm <sup>3</sup> ) – 25X <sub>0</sub> | Pb/Si - 3X <sub>0</sub>               |
| Avalanche Photo Diodes                               | Vacuum Photo Triodes                             | , , , , , , , , , , , , , , , , , , , |
|                                                      |                                                  |                                       |

![](_page_3_Picture_0.jpeg)

#### ECAL performance target

- Excellent energy (and position) resolution for photons and electrons crucial for studying interesting physics channels (H→γγ, H→ZZ→4e, Z'→ee ...)
- Benchmark physics process  $H \rightarrow \gamma \gamma$
- Energy resolution target
  - 0.5% for unconverted photons

![](_page_3_Figure_6.jpeg)

- Constant term
- temperature/HV stability
- accuracy of intercalibration constants
- non uniformity of longitudinal light collection
- dominates at high energy

![](_page_3_Figure_12.jpeg)

![](_page_4_Picture_0.jpeg)

#### ECAL status and stability

![](_page_4_Figure_2.jpeg)

![](_page_5_Picture_0.jpeg)

#### ECAL low level variables

#### 7 TeV Minimum bias collison events Good agreement data/MC

![](_page_5_Figure_3.jpeg)

- Energy spectrum of the individual channels
- Azimuthal distribution of the channel with the highest reconstructed energy

![](_page_6_Picture_0.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_7_Picture_0.jpeg)

#### **ECAL** calibration

- Calibration aims at the best estimate of the energy of electrons/photons
- Energy of electrons and photons spread over several crystals

![](_page_7_Figure_4.jpeg)

- ECAL pre-calibrated prior to LHC collisions
  - intercalibration: from Test Beams, Cosmics, Beam Dumps and Lab measurements overall precision ~0.5%-2% (EB), ~5%(EE)
  - *energy scale*: set at Test Beam, verified with cosmics
- Improving calibration *in-situ* using LHC collisions data
  - $\Phi$ -symmetry,  $\pi^0(\eta) \rightarrow \gamma \gamma$ , isolated electrons from  $W \rightarrow e\nu$ ,  $Z \rightarrow ee$

![](_page_8_Picture_0.jpeg)

### In-situ calibration strategies

Several methods to calibrate in-situ:

- Φ-symmetry
  - fast calibration method
  - based on invariance around the beam axis of the energy flow in minimum bias
  - intercalibration of crystals in a ring at the same pseudorapidity
  - inhomogenities limit the precision to ~1.5-3%
- $\pi^0$  and  $\eta$ 
  - mass peak of photon pairs selected as  $\pi^0(\eta) \rightarrow \gamma \gamma$  candidates
  - useful at start-up to investigate the ECAL energy scale
- *isolated electrons* from  $W \rightarrow ev$ ,  $Z \rightarrow e^+e^-$ :
  - E/P measurement
  - main tool for several fb<sup>-1</sup>
- di-electrons resonances and  $Z \rightarrow e^+e^-$  and  $J/\psi \rightarrow e^+e^-$  to monitor and correct the absolute energy scale

![](_page_8_Figure_15.jpeg)

![](_page_9_Picture_0.jpeg)

#### Intercalibration results

- Combination of  $\Phi$ -symmetry,  $\pi^0 \rightarrow \gamma \gamma$ and beam dump calibrations gives a precision of 0.6% in the central region with only 250 nb<sup>-1</sup>
- already close to the 0.5% goal for H→γγ discovery!

![](_page_9_Figure_4.jpeg)

![](_page_10_Picture_0.jpeg)

#### Low mass resonances-energy scale

- Absolute energy scale measured in Test Beam using electrons of known energy
- In collision events, a first indication from  $\pi^0 \rightarrow \gamma \gamma$  and  $\eta \rightarrow \gamma \gamma$ , comparing data and MC: agreement at the 1% (3%) level in EB (EE)
- In the long term: J/ $\psi$  and Z decays (Z $\rightarrow$ ee, Z $\rightarrow$  $\mu\mu\gamma$ )

![](_page_10_Figure_5.jpeg)

| $\pi^0$ peak | Data (MeV/c <sup>2</sup> ) | $MC (MeV/c^2)$  | Data/MC - 1           |
|--------------|----------------------------|-----------------|-----------------------|
| EB-          | $134.53\pm0.03$            | $135.14\pm0.02$ | $(-0.45\pm0.03)~\%$   |
| EB+          | $133.78\pm0.03$            | $134.94\pm0.02$ | $(-~0.86\pm0.03)~\%$  |
| EB           | $134.16\pm0.02$            | $135.07\pm0.02$ | $(-~0.68\pm0.02)~\%$  |
| EE-          | $138.5\pm0.3$              | $134.8\pm0.3$   | $(+ 2.8 \pm 0.3)$ %   |
| EE+          | $137.0\pm0.3$              | $134.2\pm0.3$   | $(+~2.1\pm0.3)~\%$    |
| EE           | $137.8\pm0.2$              | $134.5\pm0.2$   | $(+ 2.5 \pm 0.2)$ %   |
| η peak       | Data (MeV/c <sup>2</sup> ) | $MC (MeV/c^2)$  | Data/MC - 1           |
| EB-          | $539.4\pm0.9$              | $543.3\pm0.7$   | $(-0.7\pm0.2)~\%$     |
| EB+          | $536.5\pm1.0$              | $543.7\pm0.7$   | $(-1.3 \pm 0.2)$ %    |
| EB           | $537.8\pm0.6$              | $543.3\pm0.5$   | $(-$ 1.0 $\pm$ 0.1) % |

![](_page_11_Picture_0.jpeg)

#### Electrons

![](_page_11_Figure_2.jpeg)

![](_page_12_Picture_0.jpeg)

#### Photons

![](_page_12_Figure_2.jpeg)

![](_page_13_Picture_0.jpeg)

- The CMS ECAL performances in 2010 collisions have been shown.
- ECAL stability is within specifications and constantly monitored
- First collisions provided the opportunity to test our understanding of basic observables
- *In-situ* calibration procedures are being carried out
- Channel-to channel calibration precision at 0.6% level in the central EB region (target for  $H\!\to\!\gamma\gamma$  )
- Global energy scale in agreement with expectations within 1% in EB and 3% in EE
- The ECAL calibration is being improved using the most recent data
- Good performances in the electromagnetic objects (electrons and photons) reconstruction

![](_page_14_Picture_0.jpeg)

#### Backup slides

![](_page_15_Picture_0.jpeg)

#### **ECAL reconstruction**

- Signal reconstruction aimed at the best estimate of energy and time in each channel
- Signal quality checked and detector anomalies dealt with
- Among these, direct ionization of the APD efficiently identified and removed at the reconstruction level, exploiting:
  - energy pattern inconsistent with electromagnetic showers
  - timing distribution

![](_page_15_Figure_7.jpeg)