

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC *Mission:* Studying the Physics and Developing the Technologies for Future HEP Accelerators.

ANL Efforts Toward Two Beam Acceleration and Advanced Accelerator R & D Activities

Wei Gai

Tsinghua CLIC Workshop

March 24 - 25

- Overview and AWA Facility Description
 Recent Research Highlights and Planned Experiments
- AWA Upgrade
- Collaboration works with other groupsILC/CLIC Positron Sources
- Summary

Overview and AWA Description

Challenges for Future HEP Linear Colliders

- High gradient (~hundreds MV/m) and High Impedance (high R/Q)
 - Requires new or alternative accelerating structures.
- High Power RF Sources (~ GW Scale)
 - Requires new type sources.
- Higher order mode damping
 - Requires beam breakup control.
- Positron acceleration

Alternative Structures (Example, dielectric):

- Comparable accelerating properties as metal structures; More material options; Possibly higher gradients;
- Can be used as power extraction at GW level
- Simpler geometry, easy to construct and HOM damping.
- No difference for e- and e+.

Alternative collider schemes beyond ILC/CLIC:

- Forward looking beyond the current CLIC parameters. Many advanced accelerator schemes are being studied (much less mature than CLIC, however):
 - Laser driven plasma wakefield
 - Electron beam driven plasma wakefield
 - Dielectric wakefield accelerator
- History has shown many good designs may not materialize into real machines (cost and ...).
- Technology breakthroughs will lead to better and cheaper machine.

We are operating a unique facility (AWA) to:

- High-Power/High-Brightness Electron Beams for Wakefield Accelerations and applications to future LC.

Producing world record high current electron beams; developing technologies for beam generation, propagation, & characterization.

- Advanced Accelerating Structures and Concepts
 - Design, construction and testing of high gradient WF structures: dielectrics, photonic band gap, tunable dielectric and left-handed meta-materials.
 - Enhanced transformer, multi-drive beam wakefields and solid state PASER.
- Support for Existing HEP programs
 - 1. Positron source for ILC/CLIC
 - 2. Lab Astrophysics
 - 3. Providing facilities for collaborator/user's research program.

RF breakdowns in accelerating structures are not well understood, but ...

- Data seems to show higher RF breakdown threshold (or lower breakdown rate) with shorter pulse (~ 10 ns).
- This may give us a path to high gradients for multi-TeV class accelerator using Wakefield Acceleration:
 - Can generate RF with high current electron beam;
 - RF pulse length can be easily controlled;
 - Or Simply Using Collinear WF Accelerator.

Advanced Accelerating Structures Development

Improved Iris loaded structures

Photonic band gap structures

Dielectric loaded structures

Meta/left-handed structures

Flexible Beam Parameters at the Argonne Wakefield Accelerator (AWA)

The beam energy will be up to 75 MeV in a few years

- Thanks for DOE support, we will able to upgrade the facility to 75 MeV
 - Two additional Klystrons and associated RF components.
 - 5 Additional Linac Tanks
 - Reconfigured Tunnel and Beamlines

The AWA Upgrade Plan

Reconfigured experimental area, 3 beam lines:

What we could do with the 75 MeV drive beam:

- Higher gradient excitation: ~ 0.5 1 GV/m in structures (~ 3 mm apertures)
 - Current: 100 MV/m
- Higher RF power extraction: ~ GW level (75 MeV, 130 Amps, 10 ns, 10 GW beam power)
 - Current: ~ 100 MW.

A Pathway to TeV Class Linear Colliders

Wakefield Acceleration

- Advanced structures: dielectric-loaded (and other novel) structures to reach high-gradient (hundreds of MV/m)
- High power sources: drive beam generates GW scale RF

Conceptually, either scheme can be staged to TeV scale

Electron Beam Driven High Gradient Wakefields

- A new way to power the accelerating structure by transporting the power in the electron beam.
- Applications
 - Collinear wakefield acceleration
 - Two-beam acceleration
- Keys to the success: Drive beam, drive beam and drive beam!
- Energy \uparrow , Charge \uparrow Bunch length \downarrow Emittance \downarrow

$$W_{Z}(z) \approx \frac{Q}{a^{2}} \exp\left[-2\left(\frac{\pi \sigma_{z}}{\lambda_{n}}\right)^{2}\right] \cos(kz)$$
$$\sigma_{r} = \left(\frac{\varepsilon_{N}}{\gamma}\beta\right)^{1/2}$$

10 nC a=0.1 mm \rightarrow 5 GV/m.

Some Thoughts on Linear Collider Scaling

Luminosity

$$L = \frac{q^+ q^- N_b f}{\varepsilon_x \varepsilon_y} \cdot F$$

Where

- q+, q⁻ are the positron and electron charges. Nb is the number of bunches per train and f is the repetition rate. F is a constant makes the unit correct. $\varepsilon_x \varepsilon_y$ are the transverse emittances.
- Emittance Growth rate in Accelerating structures
 - $\delta\epsilon \propto W_{\perp} \delta x$ (Difficult to control, contribute to single and multiple bunch beam instabilities).
 - $\delta E \propto W_{//}$ (This can be corrected)

Wakefield Scaling vs Frequency

- Normally the structure aperture a is a fraction of the wavelength (otherwise Er>>Ez). $\rightarrow a \sim \lambda$ for the first order approximation.
- In general, we have

$$W_{\perp} \propto \frac{1}{a^3} \propto \frac{1}{\lambda^3} \propto f^3$$

Then, emittance growth rate without damping:

$$\Delta \varepsilon \propto W_{\perp} \propto f^3$$

We chose to work on the WF scheme in the microwave (~ 10 – 100 GHz range).

Recent Research Highlights and Planned Experiments

Research Highlights for the Last Three Years

- High Gradient WF Excitation (100 MV/m achieved)
- High Power generation and extraction (7.8 and 26 GHz)
- Advanced Concepts (PBG and Meta-material structure).
- High Brightness Beam and Beam Manipulation
- ILC/CLIC Positron Sources

Experimental Setup for High Gradient Tests

Goal:

Test breakdown thresholds of dielectric structures under short RF pulses.

Infer Gradients from MAFIA

Dielectric Loaded Structures Tested

So far, no breakdown observed yet in this regime.

SW Structure	#1 C10-102	#2 C10-23	#3 C5.5-28	#4 Q3.8-25.4	
Material	Cordierite	Cordierite	Cordierite	Quartz	
Dielectric constant	4.76	4.76	4.76	3.75	
Freq. of TM01n	14.1 GHz	14.1 GHz	9.4 GHz	8.6 GHz	
Inner radius	5 mm	5 mm	2.75 mm	1.9 mm	
Outer radius	7.49 mm	7.49 mm	7.49 mm	7.49 mm	
Length	102 mm	23 mm	28 mm	25.4 mm	
Wakefield gradient	0.45 MV/m/nC	0.5 MV/m/nC	0.91 MV/m/nC	1.33 MV/m/nC	
Maximum charge	46 nC	86 nC	86 nC	75 nC	
Maximum gradient	21 MV/m	43 MV/m	78 MV/m	100 MV/m	

High Power RF generation using dielectrics and high current bunch train (7.8 GHz Power Extractor)

$f_{ m \it RF}$ GHz	<i>ID</i> mm	<i>OD</i> mm	L mm	$arepsilon_{ m r}$	$\pmb{\beta}_{g}$	t _d ns	$oldsymbol{\delta}_d$ 10 ⁻⁴	\mathcal{Q}_w	Q	[<i>r/Q</i>] kΩ/m	r _{sh} MΩ/m
7.8	12.04	22.34	266	4.6	0.23	2.9	5	8777	2745	6.09	16.7

dielectric = cordierite

Development of Dielectric-Based Wakefield Power Extractors

C-Band Wakefield Power extractor

•30ns,1MW & 6ns, 40MW 7.8GHz rf pulse produced •20ns, > 500MW with the

upgraded AWA beamline.

Ka-Band Wakefield Power extractor

- •16ns,1MW & 6ns, 30MW 26GHz rf pulse prodced
- •Working toward 20ns 150MW.

Wakefield Study of an X-band PBG Structure (ANL/Tsinghua/Euclid)

•Successfully identified and characterized the wakefield modes, including major monopole (TM_{01} like, TM_{02} like), and dipole modes (TM_{11} like and TM_{12} like) by the precisely beam offset control and high frequency rf probe.

•Demonstrated Q of the dipole mode is ~10 weaker than that of the monopole mode.

•Performed high charge wakefield excitation. 80nC bunch was transmitted, which is equivalent to 30MV/m of gradient on axis. The gradient was calibrated in a collinear wakefield acceleration test.

•Demonstrated the techniques to experimentally study the wakefield of geometrical complicated accelerating structures

Experiment of Wakefield Transformer Ratio Enhancement

➤We demonstrated the enhanced wakefield transformer ratio in a dielectric based collinear wakefield accelerator using a ramped drive bunch train.

➤The enhanced wakefield transform ratio for two ramped drive bunches is 3 in theory and 2.3 in measurement. Transformer ratio =

Max energy gain of the witness bunch

Max energy loss of the drive bunch

Transformer ratio limited: R≤2 @ a longitudinally symmetric drive bunch, but it can be enhanced greater than 2 using asymmetric bunch.

Planned experiments using the existing 15 MeV beamline:

- High transformer ratio:
 - Ramped bunch (Euclid) (2010, ongoing, R>3 observed)
 - Rectangular two channel (Yale/Omega) (2010, installed next month))
 - Ring beam (Yale/Omega). (2010)
- Advanced Structures
 - High gradient Photonic Band Gap (2010, Tisnghua)
 - Tunable Dielectric Structure Wakefield Experiment. (2010, Euclid)
 - Beam Break Up control (2010, Euclid)
 - High Power extraction (2010, ANL/Euclid)
- High brightness beam experiment.
 - Demonstrate Emmittance exchange (applications to beam cooling and LC sources).

Facility Upgrade (details to follow)

Pathways to higher gradients and higher powers (beams, beams, beams)

- We are approaching the limitations of the single beam capabilities. We need to generate a higher charge bunch train to increase the gradient. Currently, we are installing new gun and cathode to:
 - Increase the QE by a factor of 100 (using cesium telluride photocathodes). These high QE photocathodes will make possible the generation of long, high charge bunch trains. (Jointly supported by ONR and ANL LDRD).
 - Build additional L-band RF power station klystron (thanks to DOE and B. Carlsten & S. Russell (LANL), for loaned klystron). This will increase the beam energy from 15 MeV to 23 MeV using an existing spare Linac, or even higher with additional Linac.
- With additional funding from DOE (2 millions), we are furthering upgrade the facility to 75 MeV.

New RF Gun

- Final brazing cycle has been done
- The fine tuning of the RF properties are under way (resonant frequency, field balance between the two cells, and critical coupling)
- Installing in the beamline now (see tour)

Cesium Telluride Photocathode

- Quantum efficiencies of a few percent (13% max) are achieved routinely; need 0.5%,.
- Still working on improving the QE uniformity across the cathode surface.
- Transport system from preparation chamber to RF gun is basically ready.

Major deliverables in the next three years:

- Complete the RF upgrade and deliver the 20 MW RF power to the bunker (done)
- Install and commission the Cs₂Te RF photocathode gun, initial beam testing for the high current beam (ongoing)
- Construct two new RF modulators (2010), install two klystrons and associate RF components (2011).
- Expand bunker (2010)
- Design, fabricate and install the 4 additional L-band tanks (2010-2011).
- Generate and characterize the high current beam to 25 MeV. Then 75 MeV (2009 – 2010 – 2012).
- Demonstrate high RF power (~ GW) extraction experiments. (2011-2012)
- Starting high gradient wakefield (~ 500 MV/m) experiments using high charge bunch train. (2011).

Collaboration works with other groups

ILC/CLIC Positron Sources

Positron source study for ILC (under the framework of the GDE)

► ANL responsible for

- end to end simulation of ILC positron source: numerical model of undulator radiation; investigated and compared many different undulator parameters proposed by collaborators; the impact on yield for different OMD options
- the energy deposition calculating in the targets (Ti, liquid pb).
- collaborating with KEK on their conventional e+ source scheme and compton scattering based e+ source.
- emittance evolution of drive electron beam passing through undulator.

> Currently working on undulator parameters for Minimum Machine option.

Undulator Based Positron Source for CLIC (official CLIC Collaboration Member)

≻We study

- Alternative e+ source, undulator based positron source.
- Effect of undulator to the drive beam emittance.
- Correlation between yield and polarization for this undulator.
- Overall CLIC complex layout with undulator based e+ source.

Summary:

- Wakefield acceleration → a path toward future HEP colliders.
 - A dedicated high charge facility constructed to study the beam-structure interactions
 - Many experiments performed, systematically achieving 50
 100 MV/m and short RF pulses at ~ 50 MW.
 - Further experiments planned with the upgraded facility, using multiple beam, we are expecting higher gradients (~ 200 - 500 MV/m) and power (~ GW MW) for short pulses.
 - Demonstrate our WF technology that could lead to future HEP LC.
- Serving HEP communities.

RF breakdowns in accelerating structures are not well understood, but ... (keep this one?)

- Data seems to show higher RF breakdown threshold (or lower breakdown rate) with shorter pulse (~ 10 ns).
- This may give us a path to high gradients for multi-TeV class accelerator using Wakefield Acceleration:
 - Can generate RF with high current electron beam;
 - RF pulse length can be easily controlled;
 - Or Simply Using Collinear WF Accelerator.

