

cH±arged 2010

Uppsala, 27-30 September 2010

QCD backgrounds in charged Higgs searches

Alexandros Attikis
University of Cyprus (UCY)

for the CMS Collaboration

Outline

- Introduction
- Tau-Jet ID algorithms
 - Efficiencies (MC)
 - Fake-Rates (MC & Data)
- Data-driven methods for estimating QCD Multi-Jet background:
 - Fake-Rate Application in tt "lepton+ jets" channel
 - Relative Isolation variable (isol_{Rel}) in tt "lepton+jets" channel
 - Template Fit in tt "lepton+jets" channel
 - Kinematical variable α_T in SUSY Searches
 - Fake-Rate Application in H[±] searches (fully hadronic)
- Summary

Introduction

- QCD Multi-Jet production is:
 - of great importance in H[±] searches as it constitutes significant background
 ⇒Need Event Selection that suppresses QCD background
 - challenging to predict due to large & poorly known cross-section.
- Suppression of QCD backgrounds not enough due to:
 - fake Tau-jets and..
 - fake-MET, resulting primarily from jet resolution effects which can allow QCD Events to pass the Signal Event selection.
- ⇒Must control both **Fake Tau-jet Rates** and **MET tails.** To do this need:
 - Data-driven methods to estimate QCD background in signal region

τ-Jet ID algorithms

CMS PAS PFT-10-004

- Commissioning of the algorithms for RECO and ID of τ -Jets @ 7TeV :
 - •Efficiencies using MC
 - Fake-Rates using MC & Data
- Algorithms studied:
 - Simple algos (cone-based) : TCTau , PF Shrinking Cone
 - Complex algos (constituent-analysing): TaNC , HPS
- **TCTau:** a cut-based τ -Jet algorithm that uses Tracker to correct Energy + direction from Calo.
- PF Shrinking Cone: uses a signal cone that shrinks as a function of jet E_T ($\Delta R_{signal} = 5.0/E_T^{PF-Jet}$)
- TaNC: A multivariate Tau-ID algorithm based on Neural Networks (NN)
- HPS: Based on charged hadrons and neutral EM objects (photons) & aims for optimised π^0 reconstruction

τ-Jet ID algorithms Efficiencies

- Efficiency determined from τ-leptons (decaying hadronically) selected at GEN Level:
 - using a sample of simulated $Z \to \tau^+ \tau^-$ events
- strong p_T dependence
 - Fast rise at low p_T, reach plateau at hight p_T (for both "classes" of algos)
- flat in η (efficiency slightly higher for central jets)
- Efficiency of all algorithms to be investigated with data and compared with all physics analyses (~100 pb-1)

τ-Jet ID algorithms Fake-Rates

CMS PAS PFT-10-004

Fake-Rates Data @ 7TeV

- QCD Multi–Jet data
- parametrized with jet p_T and η .
- **Probability** a jet "fakes" τ-jet:

$$(P_{fake-rate})_{bin} = \left(\frac{N_{jets} passed \tau - ID}{N_{jets}}\right)_{bin}$$

- Fake-Rates are have strong p_T dependence & are flat in jet η:
 - The PF Shrinking Cone & TCTau have better performance at high p_T
 - The HPS & TaNC rise steeply at low p_T. HPS falls sharply at high p_T
- The Fake-Rate & Efficiency of complex algos depend on working—point. "Medium tight selection criteria":
 - HPS ≈0.2% Fake-Rate for ≈27% efficiency
 - TaNC ≈0.3% Fake-Rate for ≈36% efficiency
- Simple algos have very similar Fake-Rates & Efficiencies: ≈2.0% Fake-Rate for ≈45% efficiency

τ-Jet ID algorithms **Fake-Rates**

CMS PAS PFT-10-004

Fake-Rates

MC Vs Data @ 7TeV

= Data @ 8.4 nb⁻¹

Simulation PYTHIA 8.135

TaNC 1 00% Data

TaNC 0.25% Data

TaNC 1.00% Simulation

TaNC 0.50% Simulation

TaNC 0.25% Simulation

TaNC

CMS Preliminary

 $L = 8.4 \text{nb}^{-1}$

 $\sqrt{s} = 7 \text{ TeV}$

ml < 2.5

10⁻

MC predictions systematically underestimate the fake-rates

Data-driven methods for estimating QCD Multi-Jet background

- Generic QCD bkgs significant in TTbar:
 - Jets faking e- in **e+jets final state**
 - muons in hadronic jets from heavy flavours in μ+jets final state
- Expect similar contributions for lepton
- +jets final state in H[±] searches
 - lepton + ≥2 jets starting point

Data-driven methods investigated so far in CMS:

- TTbar "lepton+jets" studies (can be used in H by replacing lepton with the tau-Jet)
 - Fake-Rate Application
 - Extrapolation methods using Relative Isolation
 - Fits to discriminating variables using a Template Fitting method
- **SUSY** studies
 - Extrapolation methods using kinematical variable α_T

CMS PAS TOP-08-004

- Recent TTar studies have investigated strategies to estimate backgrounds due to:
 - QCD, W+Jets, TTbar with W→ I v , W→q q
- Fake-Rates have been used to estimate Multi-Jet Backgrounds for TTbar "lepton +jets" Events: $t\bar{t} \to (l\nu) (\tau \nu_{\tau}) b\bar{b}$, $(l=e/\mu)$

• This channel is of particular interest for **H**[±] **searches**:

- if $\mathbf{m_{H\pm}} < \mathbf{m_t}$ exists, expect anomalous τ -lepton production due to $t \bar{t} \to W^\mp \bar{b} H^\pm b$
- ⇒Same strategies can be used for H[±] Searches in the "lepton+jets" final state

CMS PAS TOP-08-004

- Estimated the number of expected Events in **Multi-Jet** and **γ+Jets** samples.
- The QCD Multi-Jets and γ +jets samples were normalised to: $\int \mathcal{L} \, dt = 100 \, \mathrm{pb}^{-1}$
- Method used:
 - 1. Calculate τ -Jet Fake-Rate & parametrise with jet \mathbf{p}_{τ} : $\left(\mathbf{p}^{\mathrm{fake}}\right)_{\mathrm{bin}} = \left(\frac{\mathbf{N}_{\mathrm{jets}}^{\tau-\mathrm{ID}}}{\mathbf{N}_{\mathrm{jets}}}\right)_{\mathrm{bin}}$
 - 2. Apply Fake-Rate to each jet in Event & sum up to get an Event Weight

$$N_{fake}^{Evts} = \sum_{j}^{All\,Evts} p_{j}^{fake}$$

$$p_{j}^{fake} = \sum_{i}^{All \, jets} p_{i} (p_{T}, \eta)_{j}$$

- 3. Number Bkg Events is found by summing all Weighted Events
- 4. Compare to Number of Events expected from MC

CMS PAS TOP-08-004

- The QCD Multi-Jets sample was divided to 3 sub-sets (correlated)
 - Ldg Jets, Next-To-Ldg Jets, Back-To-Back Jets (Δφ > 2.4)

Sample	Method	au-fakes	
	1- or 3-prongs	"data"	MC
QCD Multi-Jets	"all" Jets	542 ± 9	
QCD Multi-Jets	Ldg-Jets	639 ± 10	
QCD Multi-Jets	"Next-To-Ldg Jets	498 ± 9	438 ± 20
QCD Multi-Jets	"Back-To-Back Jets	577 ± 10	
γ +Jets	"all" Jets	523 ± 8	

Main Features:

- Average of the two samples used is 20% away from MC underestimate
- Method strongly depended on the sample composition & jet-selection:
 - QCD sub-sets have up to 25% discrepancies ("Ldg" "Next-to-Ldg" Jets)
 - Indicative of biases introduced by the various methods

Relative Isolation: tt "lepton+jets" channel

CMS PAS TOP-10-004

• Relative Isolation quantifies the degree of isolation of a lepton:

$$isol_{Rel}^{\mu/e} = \frac{\sum^{\Delta R^{cone} < 0.3} p_T^{trk} + \sum^{\Delta R^{cone} < 0.3} E_T^{ECAL} + \sum^{\Delta R^{cone} < 0.3} E_T^{HCAL}}{p_T^{\mu/e}}$$

- Non-isolated (large isolation values) leptons come mostly from QCD generic jets
- Whereas, μ /e candidates from W-decays are:
 - isolated from other Event activity (small isolation values)
 - consistent with originating from the I.P. (small impact parameter d_0)
- ⇒The signal region is characterised by small values of Relative Isolation (isol_{Rel})
- To estimate the QCD contributions in the **signal region**, one can:
 - define a control region (large isol_{Re}values), dominated by QCD Multi-Jet Events
 - Fit isol_{Rel} to a function in the contol region and extrapolate in the signal region

e.g.
$$0.1 \le |sol_{Rel}| \le 1.0$$
 and $0.0 \le |sol_{Rel}| \le 0.1$

Get estimate of number of QCD Multi-Jet Events in signal region

Relative Isolation: tt "lepton+jets" channel

fit

control region

CMS PAS TOP-10-004

extrapolate

signal region

Shaded histograms denote:

• Expected Signal & Bkg contributions, Normalized to 78 nb⁻¹

• QCD composition:

- electrons from b/c-decays in jets and...
- electrons originating from γ-conversions in Si Tracker
- Exponential Function Fit
- 50% uncertainty assigned to predicted QCD Events
- Good agreement with MC (~10% discrepancies)

$isol_{rel}$ extrapolation method $(e + jets)$			
	≥ 0 -jet	≥ 1 -jet	
Averaged Nest.	70 ± 35	44 ± 22	
Averaged $N_{QCD}^{est.}$ Prediction N_{QCD}^{MC}	63 ± 7	42 ± 6	

Relative Isolation: tt "lepton+jets" channel

- Landau fit

Extrapolation

control region

CMS PAS TOP-10-004

signal region

CMS Preliminary 78 nb⁻¹ at \sqrt{s} = 7 TeV

70

- muons from b/c-decays in jets
- decays-in-flight of hadrons
- hadronic showers reaching muon systems
- Landau Fit (QCD background composition different)
- **50**% uncertainty assigned to predicted QCD Events
- Poor agreement with MC for ≥ 0-jets (~300%)
- Better agreement with MC for ≥ 1-jets (~15%)

isol _{rel} extrapolatio	n method	$(\mu + \text{jets})$
	≥ 0 -jet	≥ 1 -jet
Averaged Nest.	7 ± 4	6 ± 3
Averaged $N_{QCD}^{est.}$ Prediction N_{QCD}^{MC}	21 ± 2	7 ± 2

Template Fit: tt "lepton+jets" channel

CMS PAS TOP-10-004

- Use discriminating Kinematical Variables to separate QCD Multi-Jet from signal Events
 - Missing Transverse Energy (E_T)
 - Scalar Sum of E_T^{miss} and the lepton transverse Energy: $H_T^{lep}=E_T^{miss}+E_T^{lep}$
- Construct QCD shapes from Events with near-miss e and large EM Fraction jets:
 - "Background Electrons Template": Any e-candidate failing any of 3 quality cuts:
 - $isol_{Rel} < 0.1$,
 - electron-ID
 - d_0 < 200 µm (wrt average beam spot)
 - "Jet-Electrons Template":
 - No e-candidate passed Event Selection
 - 1 Jet with E > 30 GeV , $|\eta|$ < 2.5, **EMFraction > 0.9**
 - Use these Jets as electrons
- According to simulation, both selections yield a **QCD purity** approx. 99%
- QCD Model used for estimation: Normalised mean of the two templates (bkg-e + jet-e)

Template Fit: tt "lepton+jets" channel

- Model Bias: Shift to larger values of H_T^{lep} for QCD model data
- Template Fit Method:
 - Divide model distributions to QCD region and signal region
 - Fit in QCD region (0 ≤ H_T^{lep} ≤ 60) & extrapolate in signal region
- $N_{\rm QCD}^{\rm est.}$ is the integral of the QCD template in the signal region
- For ≥0-jets: 50% away from MC predictions
- For ≥1-jets: 16% away from MC predictions

Template Fit method (≥ 0 -jet)		
Variable	$ m N_{QCD}^{est.}$	$ m N_{QCD}^{MC}$
$E_T > 25 \text{ GeV}$	19 ± 7	12.2 ± 0.2
$ m H_T^{lep} > 60 \; GeV$	39 ± 11	26.0 ± 0.3

Template Fit method (≥ 1 -jet)		
Variable	$N_{ m QCD}^{ m est.}$	$ m N_{QCD}^{MC}$
$E_T > 30 \text{ GeV}$	8 ± 5	5.3 ± 0.1
$H_T^{lep} > 70 \text{ GeV}$	10 ± 4	12.4 ± 0.2

Kinematical Variable α_T : SUSY Searches

CMS PAS SUS-10-001

- The kinematical variable α_T characterises the p_T imbalance of an event.
- Like MET, can be a powerful discriminator against QCD background.
- For multi-jets Events (N-jets system), group the jets into 2 pseudo-jets and define:
 - Total Transverse Energy: $H_T = \textstyle \sum_i^{\rm jets} p_{T_i}$

 - Difference in pseudo-jets H_T: $\Delta H_T = p_T^{pseudo-jet1} p_T^{pseudo-jet2}$ Missing H_T: $MHT = \left|\sum_i^{jets} \vec{p}_{T_i}\right|$ ("Hadronic" MET)
 - > MHT is dependent on jet thresholds
- The unique configuration of the 2 pseudo-jets is the one that minimises ΔH_T .
- For an N-jets system the variable α_T is: $\alpha_T = \frac{1}{2} \frac{H_T \Delta H_T}{\sqrt{H_T^2 (MHT)^2}}$
- For a perfectly balanced multi-jet event with no real MET: $\alpha_{\mathrm{T}} \to 0.5$
 - $\alpha_{\rm T} < 0.5$ • QCD Events largely confined in the region:
- SUSY & H[±] searches: extend to well above 0.5 (effect increases with m_{H+})

Kinematical Variable α_T : SUSY Searches

- Significant tail for slice $80 \le H_T \le 120 \text{ GeV}$ with $\alpha_T > 0.5$ (both MC and Data)
- α_T tail of QCD Events reduced dramatically by increasing H_T in Event:
 - Jet resolution effects become less significant ⇒ balance of pseudo-jets "easier"
- For H[±] fully hadronic final state we require: $H_{\scriptscriptstyle T} > 110 \text{ GeV}$

Kinematical Variable α_T : SUSY Searches

CMS PAS SUS-10-001

- Compute fraction of Events that pass the $\,lpha_{
 m T} \geq 0.55\,$ cut as a function of ${
 m H_T}$
- ~Exponential decrease of surviving events with increasing H_T observed (for both 2-jet and ≥ 3-jets)
- Same behaviour even if:
 - A photon is treated as a jet
 - Jet energies are smeared
 - A jet is randomly removed from Event

 \Rightarrow Rejection power of α_T gets better with increasing H_T , even with mis-measurement biases

Kinematical Variable α_τ: SUSY Searches

Fraction of Events passing the $\alpha_T > 0.55$ cut, as a function of Leading Jet | η |

- QCD Events with $\alpha_{\tau} > 0.55$ show:
 - no dependence on the Leading Jet |n|
 - Simulating large lost MET (by randomly removing a jet from the Event) has no effect
- SUSY Events expected to be more central than QCD Events.
- Estimate QCD background by use of signal-depleted control sample at high | n |
- Extrapolate QCD background in the SUSY signal region (low |η|)
- Under investigation whether the same method can be used for H[±] searches

Fake-Rate Application: H[±] searches (fully hadronic)

$$t\bar{t} \to W^{\mp} bH^{\pm} b \to (q\bar{q}') (\tau \nu_{\tau}) bb$$

Event selection:

- HLT_IsoTau20_Trk15 + HLT_MET20 (seeded by L1SingleTau20)
- 1 τ -jet which must match HLT Tau object (E_T > 40 GeV , p_T^{LdgTrk} > 20 GeV/c , $|\eta|$ < 2.4)
- $N_{jets} \ge 3$ (E_T > 30 GeV , $|\eta| < 2.4$)
- E_T^{miss} > 60 GeV
- Other possible cuts: 1 (or two) b-tagged jets, hadronic top reconstruction, M_T reco of H[±]
- Plans for Tau-Jet Fake-Rates measurement using data:
 - Use Single Jet Trigger
 - Select Multi-Jet Events (≥ 3 jets with $E_T > 30$ GeV and $|\eta| < 2.4$)
 - Apply the tau-ID to jets that pass the HLT_IsoTau20_Trk15 trigger: $p^{fake} = \left(\frac{N_{jets}^{\tau-ID}}{N_{jets}^{HLT} \tau-ID}\right)$

Fake-Rate Application: H[±] searches (fully hadronic)

- Measurement strategy for QCD Multi-Jets:
 - Fake-Rate Application to estimate Number of QCD Events in signal region
- Event selection:
 - HLT_IsoTau20_Trk15 + HLT_MET20 (seeded by L1SingleTau20)
 - Get QCD dominated sample (TTbar & W+jets assumed negligible)
- Apply Fake-Rate to offline tau (matched to HLT τ-Jet) to get Event Weight
- Apply a QCD-efficiency factor (ϵ_{QCD}) as determined by data (fraction of QCD events that survives all selection cuts apart from tau-ID)
- Number of surviving events gives Number of estimated QCD Events in signal region
- Systematic Uncertainties expected for this method:
 - Purity of QCD sample Check bias with MC
 - Accuracy of Fake-Rates estimations.
 - Correlation between ε_{QCD} and τ -ID efficiencies?
 - Possibility to under-estimate QCD Events

Summary

- Generic QCD is expected to be important background in H[±] searches.
- Data-driven techniques to estimate QCD background are in place:
 - "lepton+jets" final state:
 - Fake-Rate Application recipe, as used in TTbar "lepton+jets"
 - Fully Hadronic final state:
 - Fake-Rate Application using a τ -Jet + MET Trigger and a QCD-efficiency factor.
 - Methods used for TTbar "lepton+jets" channel (by replacing the lepton with the tau-Jet)
 - Possibility of using α_T under investigation
- Stay tuned for updates & first results

References

- "Study of tau reconstruction algorithms using pp collisions data collected at $\sqrt{s} = 7$ TeV", CMS Physics Analysis Summary: **CMS PAS PFT-10-004**
- "Towards the measurement of the ttbar cross section in the e-tau and mu-tau dilepton channels in pp collisions at Vs = 14 TeV", CMS Physics Analysis Summary: **CMS PAS TOP-08-004**
- "Selection of Top-Like Events in the Dilepton and Lepton-plus-Jets Channels in Early 7 TeV Data", CMS Physics Analysis Summary: CMS PAS TOP-10-004
- "Performance of Methods for Data-Driven Background Estimation in SUSY Searches", CMS Physics Analysis Summary: CMS PAS SUS-10-001

QCD backgrounds in charged Higgs searches

BACK-UP SLIDES

Track Corrected Tau (TCTau)

CMS PAS PFT-10-004

- A robust, cut-based algo that uses Tracker to correct Energy + direction:
 - Uses jets reconstucted from tracks and E-deposits in ECAL + HCAL
- Takes reconstructed tracks:
 - within a cone with $\Delta R_{\text{match}} = 0.1$ around jet axis:
 - with $p_T > 0.5 \text{ GeVc}^{-1}$
- Ldg Trk of jet (p_TLdgTrk > 5 GeVc⁻¹) is:
 - highest p_T track within cone with $d_0 < 0.1$ mm
- All Trks within signal cone considered as tau products

$$(d_{0,z} < 10mm)$$

- All Trks in isolation annulus considered for Track isolation:
 - no Trk with $p_T > 1.0 \text{ GeVc}^{-1}$ OR $\Delta d_{0,z} = |d_{0,z}^{\text{LdgTrk}} d_{0,z}|$

PF Shrinking Signal Cone

CMS PAS PFT-10-004

- The aim PF algo is to Reco and ID all stable particles within an Events using all sub-detectors:
 - e, μ , γ , hadrons (charged and neutral) and make them all available in an "Event particle-list".
- PF Tau 4-Momentum reconstructed using Sum of Tracks:
 - around direction of the Ldg p_T (within signal cone)
 - with $p_T > 0.5 \text{ GeVc}^{-1}$
 - within a signal cone ΔR = 5.0/E_T
- Ldg Trk of jet (p_T^{LdgTrk} > 5 GeVc⁻¹) is:
 - The highest p_T track within matching cone
- Isolation Requirement
 - No charged hadrons or γ with $p_T > 1.5 \text{ GeVc}^{-1}$
- Compared to PF Fixed Signal Cone
 - Has Higher Efficiency but Larger Fake-Rate

Tau Neural Classifier (TaNC)

CMS PAS PFT-10-004

- A multivariate Tau-ID algorithm based on Neural Networks (NN)
- Considers **individual** Tau hadronic decay modes
- Looks for **intermediate resonances** (ρ^{\pm} , $\alpha^{\pm 1}$) using:
 - a) method to reconstruct decay mode
 - b) **NN** classifiers to identify each decay mode

Decay modes considered

Decay Mode	Resonance	BR (%)
$\tau^- \to \mathrm{h}^- \nu_{\tau}$		11.6%
$ au^- ightarrow \mathrm{h}^- \pi^0 u_ au$	$ ho^-$	26.0%
$ au^- o \mathrm{h}^- \pi^0 \pi^0 u_ au$	α^{1-}	10.8%
$ au^- o \mathrm{h}^- \mathrm{h}^+ \mathrm{h}^- u_ au$	α^{1-}	9.8%
$\tau^- \to \mathrm{h}^-\mathrm{h}^+\mathrm{h}^-\pi^0\nu_{\tau}$		4.8%
Total		63.1%
Other hadronic modes		1.7%

- Major task: Determine number of π^{0} 's in signal cone: $(\pi^{0} \rightarrow \gamma \gamma)$
 - Examine all photons in **signal cone** with Inv. Mass < 0.2 GeVc²
 - Tag best pairs as π^{0} 's
- Reconstruct decay mode of tau candidate
- Feed Tau candidate to an enseble of NN, each dedicated to a specific τ-hadronic decay
- Get output of NN according to «chosen working point»
- There are 3 "working-points", based on NN output cuts yield:
 - Loose, medium and tight (1.0%, 0.5% and 0.25% fake-rates)

Hadron Plus Strips (HPS)

CMS PAS PFT-10-004

- Starts from PF jet and searches for Tau hadronic decay products
- Reconstruct photons in "strips", built from EM objects
- Start from most energetic PF EM particle within jet
 - Search for other PF EM particles within $\Delta n^{\text{strip centre}} = 0.05$, $\Delta \Phi^{\text{strip centre}} = 0.20$
 - Associated most energetic particle with a strip
 - **Re-Calculate** strip position
 - Search for next most energetic PF EM particle
- Combine strips with charged hadrons (p_Tstrip > 1 GeVc⁻¹)
- Reconstruct Tau 4-Vector using Hadrons + Strips
- Three "Working Points". No charged Hadrons within $\Delta R_{isol} = 0.5$ with
 - $p_T^{Ch.Hadr.} > 1.0 \text{ GeVc}^{-1}$, $E_T^{\gamma} > 1.5 \text{ GeV}$ Loose Isolation
 - $p_T^{Ch.Hadr.} > 0.8 \text{ GeVc}^{-1}$, $E_T^{\gamma} > 0.8 \text{ GeV}$ Medium Isolation
 - $p_T^{Ch.Hadr.} > 0.5 \text{ GeVc}^{-1}$, $E_T^{\gamma} > 0.5 \text{ GeV}$ Tight Isolation

Decay modes considered

Decay Mode	Resonance	BR (%)
$ au^- o \mathrm{h}^- u_ au$		11.6%
$\tau^- \to \mathrm{h}^- \pi^0 \nu_{\tau}$	$ ho^-$	26.0%
$ au^- o \mathrm{h}^- \pi^0 \pi^0 u_ au$	α^{1-}	10.8%
$ au^- ightarrow \mathrm{h^-h^+h^-} u_ au$	α^{1-}	9.8%
$\tau^- \to \mathrm{h}^-\mathrm{h}^+\mathrm{h}^-\pi^0\nu_{\tau}$		4.8%
Total		63.1%
Other hadronic modes		1.7%

Fake-Rates of τ-Jet algorithms

PAS CMS PFT-10-004

- Data Sample & Event Selection:
 - Integrated Luminosity of 8.4 nb⁻¹ @ 7 TeV
 - Based on JetMETTau SD , MinBias PD
 - Events required to pass HLT_Jet15U (single jet trigger, $E_T > 15$ GeV)

(=>dominated by QCD multi-jet events)

- Jets considered: $p_T^{jet} > 10 \text{ GeVc}^{-1}$, $|\eta^{jet}| < 2.5$
- Data compared to QCD Multi-Jet MC samples using PYTHIA 8.135

CMS PAS TOP-08-004

TTbar "lepton+jets" Events (e/ μ + τ -Jet): $t\bar{t} \rightarrow (l\nu) (\tau \nu_{\tau}) b\bar{b}$, $(l = e/\mu)$

Event-Selection for the signal channel:

- HLT1MuonNonIso **OR** HLT1Muon **OR** HLT1ElectronRelaxed **OR** HLT1Electron **OR** HLT1jet
 - a) \geq 1 isolated lepton (e/ μ with p_T > 20 GeV/c and $|\eta|$ < 2.4)
 - b) \geq 2 jets with $p_T > 30 \text{ GeV/c}$, $|\eta| < 2.4$
 - c) One **\tau-Jet** with $p_T^{LdgTrk} > 20$ GeV/c , $|\eta| < 2.4$
 - d) $E_T^{miss} > 60 \text{ GeV}$

CMS PAS TOP-08-004

TTbar "lepton+jets" Events (e/ μ + τ -Jet): $t\bar{t} \rightarrow (l\nu) (\tau \nu_{\tau}) b\bar{b}$, $(l = e/\mu)$

Event-Selection for **QCD Estimation** using **Fake-Rate Application**:

- Use Multi-Jet and γ+Jets samples & select:
 - a) \geq 1 lepton (e/ μ with $p_T > 20$ GeV/c and $|\eta| < 2.4$)
 - b) $N_{iets} \ge 2$ $(p_T > 30 \text{ GeV/c}, |\eta| < 2.4)$
 - c) $N_{iets} \ge 1$ $(p_T > 10 \text{ GeV/c}, |\eta| < 2.4) >due to Tau$
 - d) $E_T^{miss} > 60 \text{ GeV}$

CMS PAS TOP-08-004

- Fake-Rates estimated for Jets with :
 - p_T^{Ldg Trk} > 20 GeV/c
 - $p_T^{Ldg Trk} > 20 \text{ GeV/c} + \text{ Iso}_{Trk}$
- For 1pr or 3pr Jets:
 - p_TLdg Trk > 20 GeV/c + Iso_{Trk} + Iso_{ECAL}
- For 1pr Jets:
 - $p_T^{Ldg Trk} > 20 \text{ GeV/c} + Iso_{Trk} + Iso_{ECAL}$
- Main features of Fake-Rate curves:
 - approx. no jet-η dependence
 - strong jet-p_T dependence
 - rise steeply at low p_T,
 - asymptotic-like behaviour at high p_T
 - Tighter Isolation yields lower Fake-Rates

