Benchmark group: H+ in the NMSSM

Abdesslam Arhrib, Martin Flechl, Stefan Hesselbach, Cyril Hugonie, Nazila Mahmoudi, Stefano Moretti, Chris Potter Charged Higgs 2010, Uppsala, 28/9

WAX WE CALL THE CALL

Albert-Ludwigs-Universität Freiburg

NMSSM

- Adds one **scalar singlet** to the two scalar doublets of the MSSM [neutral, complex]
 - Two additional Higgs states, 1 CP-even, 1 CP-odd
 - Physical: h₁, h₂, h₃, a₁, a₂, h[±] [when CP-conserving]
 h_i, a_i: singlet component [size depends on mixing angle]
- Theoretically appealing:
 - Solves the problem: naturally at the electroweak scale [needed for electroweak symmetry breaking]
 - MSSM fine-tuning (little hierarchy) problem can be ameliorated
- Experimentally appealing: [unlike the MSSM, there is...]
 - No mass degeneracy between heavy Higgs bosons
 - Singlet component (couples only to the Higgs doublet)

- NMSSM: Non-degenerate Higgs masses allow
 - Higgs pair production [propagators do not cancel] and [MSSM: H⁺ production almost exclusively in tbH⁺]
 - Higgs-to-Higgs decays
 - e.g. pp→a₁h⁺ and h⁺→a₁W
 - Distinct detector signal: e.g. a₁a₁W → 4b+ℓ

 NMSSM allows to evade some of the direct and indirect constraints (e.g. mh+>≈120 GeV; flavor constraints)

Our starting point

Stefano's slide from cHarged08:

Some interesting NMSSM scenarios for the Charged Higgs sector (to be discussed in Benchmark Break-out Session)

Must be different from MSSM:

- 1) H+ -> W+A1 (a la Godbole/Roy) but also WH1 & WH2
- 2a) H3/A2 -> W-H+
- 2b) H3 -> H+H- (by CPC, A cannot decay to 2 charged Higgses!)
- 3) m+ ≠ mA (mH+ just above mH2 and mA1, H3, A2 heavy and singlet)
- 4) m+ << mt-mb (a la Godbole/Roy)
- 5) m+ > mt-mb, all other Higgses < mt

	no constraints			SUSY, Higgs + theory			all constraints		
	# points	$tan(\beta)$	$m_{H^{+-}}$	# points	$tan(\beta)$	$m_{H^{+-}}$	# points	$tan(\beta)$	m_{H1}
BMP1	100k	1	90	30k	1.4	170	15k	15	250
BMP2a	380k	1	70	170k	1.4	160	80k	15	210
BMP2b	90k	1	70	24k	1.6	170	7k	16	210
BMP3	44k	1	70	6k	3	160	2k	18	215
BMP4	13k	1	70	3	18	160	-	-	-
BMP5	3	10	180	-	-	-	-	-	-

NMSSM (weak scale). Soft masses for sleptons at 1 TeV, 2.5 TeV for trilinears and 150 GeV, 300 GeV, 1TeV for M1, M2, M3 risp. I then randomly scanned on lambda, kappa, Alambda, Akappa, mu and tan(beta), taking 10^9 points. Positive mass squared for all scalars, all exp. constraints (LEP/Tevatron limits, b->s γ , g-2, etc.)

1,2 suppressed in MSSM, could be experimentally accessible 4 can have large cross section; very light h+ possible

Tasks

- Identify interesting points in general NMSSM, and NMSSM versions of mSUGRA / NUHM for pp->a1 h+ in connection with h+ -> W+a1
- 2. Investigate possibility of a very light h+
- 3. Investigate h3/a2 -> W-h+, h3 -> h+h-
- 4. WH+ production in the NMSSM

everything shown is for $\sqrt{s}=14$ TeV

1. pp->a1 h+, h+-> W+a1

Production and decay: a1h+

- maximum (a1h+) and BR(h+->Wa1) values as a function of mh+ and ma1
 - Including all NMSSMtools constraints (theoretical consistency, direct collider, B Physics, etc)

of O(pb) possible; BR can always be ≈1

- Can
 - pp→a1 h+
 - h+→W+a1
 - a1→bb
- be large at the same time?
- Can reach cross section of ≈1 pb for 4b+W final state
 - very light a1 (<<50 GeV)
 - mh + = 100-150 GeV
- To do: look for points in mSUGRA / NUHM models

A caveat: small λ

As in the MSSM
$$m_A=rac{2\mu B}{\sin 2eta}$$
 except that $B=A_\lambda+rac{\kappa}{\lambda}\,\mu$

When m_A and μ are fixed: small $\lambda \Rightarrow \text{large } A_{\lambda}$

Same when A_{λ} is fixed: small $\lambda \Rightarrow \text{large } m_A$

In the cNMSSM: $\frac{\kappa}{\lambda} \sim 1$

h+→Wa1 for light h+

- Can also be produced in ttbar decays
 - Much higher cross section possible!
 - (ttbar) ≈ 900 pb
 - BR(h+→Wa1) can be ≈1 for most mh+/tan β values

2. Light h+ in the NMSSM

Minimum h+ mass

- mh+ (and ma1) minimum, as a function of tan
 - General NMSSM scan, >0
- Applying all NMSSMTools constraints

mh+ can even be below 80 GeV

SuperISO constraints

- Same as before applying SuperISO constraints
 - These light h+ points not allowed for tan β>10 (D/B→τν)
 - b→s limits can be evaded with a bit of fine-tuning

- Very light h+ still possible for tan <10
- News: NMSSMTools now fully interfaced with SuperIso

Constrained NMSSM

- Similar, for the constrained NMSSM (mSUGRA)
 - No points with mh+ <280 GeV found

Same for NUHM would be of interest

3. h3 -> Wh+

$h3 \rightarrow Wh+$

- h3→Wh+
 - Needs large mass splitting h3, h+
 - Possible if h3 is singlet-dominated
 - Large phase space gives high BR in spite of singlet suppression
 - But: h3 production if singlet-dominated?
 - Only option seems associated production with 2 charginos

Conclusions

- Some interesting NMSSM parameter regions have been identified where benchmark points could be defined
- Main interest:
 - Large $\sigma(pp \rightarrow a1h+ \rightarrow a1a1W \rightarrow bb bb lv)$
 - Further studies in cNMSSM/NUHM needed
 - Very light h+ (below 80-100 GeV)
- Further investigations
 - h3->h+W does not seem viable
 - Wh+ production not studied yet (NMSSM)
- Other progress
 - NMSSMTools is now fully interfaced with SuperISO

Backup slides

NMSSM Tools constraints

chargino too light

excluded by Z -> neutralinos

charged Higgs too light

excluded by ee -> hZ

excluded by ee -> hZ, h -> bb

excluded by ee -> hZ, h -> tautau

excluded by ee -> hZ, h -> invisible

excluded by ee -> hZ, h -> 2jets

excluded by ee -> hZ, h -> 2photons

excluded by ee \rightarrow hZ, h \rightarrow AA \rightarrow 4bs

excluded by ee -> hZ, h -> AA -> 4taus

excluded by ee \rightarrow hZ, h \rightarrow AA \rightarrow 2bs 2taus

excluded by $Z \rightarrow hA$ (Z width)

excluded by ee -> hA -> 4bs

excluded by ee -> hA -> 4taus

excluded by ee -> hA -> 2bs 2taus

excluded by ee \rightarrow hA \rightarrow AAA \rightarrow 6bs

excluded by ee -> hA -> AAA -> 6taus

excluded by ee \rightarrow Zh \rightarrow ZAA \rightarrow Z + light pairs

excluded by stop -> neutralino c

excluded by sbottom -> neutralino b

squark/gluino too light

selectron/smuon too light

stau too light

lightest neutralino is not LSP

Landau Pole in I, k, ht, hb below MGUT

unphysical global minimum

Higgs soft masses >> Msusy

excluded by WMAP (checked only if OMGFLAG=1)

eff. Higgs self-couplings in Micromegas > 1

b->s gamma more than 2 sigma away

Delta M s more than 2 sigma away

Delta M d more than 2 sigma away

 $B \ s->mu+mu-more\ than\ 2\ sigma\ away$

B+-> tau+nu tau more than 2 sigma away

(g-2) muon more than 2 sigma away

excluded by Upsilon(1S) -> A gamma

excluded by etab(1S) mass difference

Scan slide 8

Random scan, 500M points in the general NMSSM

$$M_1 = 100...800$$
 tan = 1..20 $\mu_{eff} = -500..500$ A = -300..300,

•
$$M_2 = 2M_1 M_3 = 6M_1$$

$$M_3 = 6M_1$$

$$A_{t.b.\tau} = -2500 \text{m}_{\sim} = 300$$

$$m_{\sim q} = 1000$$

All points

500M

Theoretical Contraints I

(consistency) 49M

$$m_{H^+} > m_A^+ + m_W^-$$

10M

All Theoretical and Direct Contraints

1.8M

xsec*br hp a1w*br a bb*br a bb>100fb

0.5M

 $[= (pp \rightarrow AH^+ \rightarrow 4b + \ell \nu)]$

B physics etc Constraints

0.07M

$$M_{H^\pm}^2 = rac{2\mu_{eff}}{\sin 2eta}(A_\lambda + \kappa s) + M_W^2 - \lambda^2 v^2 .$$