Gluon saturation at LHC from CGC

Amir H. Rezaeian

Universidad Tecnica Federico Santa Maria

In collaboration with: Genya Levin (Tel Aviv \& USM)

Workshop on Hadron-Hadron \& Cosmic-Ray interactions at multi-TeV 29 Nov-3 Dec 2010,ECT*, Trento

Based on references

- Levin and A.H.R," Gluon saturation and inclusive hadron production at LHC', PRD 82, 014022 (2010), arXiv:1007.2430.
- Levin and A.H.R, "Hadron multiplicity in pp and AA collisions at LHC from the Color Glass Condensate", PRD 82, 054003 (2010), arXiv:1005.0631.
- Kormilitzin, Levin and A.H.R. "On the Nuclear Modification Factor at RHIC and LHC', arXiv:1011.1248.

Outline

- Inclusive hadron production in pp collisions at the LHC.
- Compare with the recent LHC data from ALICE, ATLAS, CMS. Is there any indication of gluon saturation at the LHC?
- Inclusive hadron production in $A A$ collisions at the LHC. What would be the implication of ALICE new data on $A A$?

CGC

Initial Singularity

Glasma

sQGP

Hadron Gas

Color-Glass-Condensate (CGC)

The CGC is the universal limit for the components of a hadron wavefunction which is highly coherent and extremely high-energy density ensemble of gluons.

For recent review:
McLerran, arXiv:1011.3203; arXiv:1011.3204
Gelis, Iancu, Jalilian-Marian and Venugopalan, arXiv:1002.0333.

Gluon saturation

Gribov, Levin, Ryskin Mueller, Qiu
Balitsky, Kovchegov

- Increasing Q^{2} : Density decreases, partons keep their identity.
- Increasing $1 / x$: Density in the transverse grows, evolution is nonlinear.
- Hard processes develop over large longitudinal distances $I_{c} \sim 1 / 2 m_{N} x$.

Small-x physics is very relevant at the LHC

The bulk of particle production comes from very low-x ($p_{T} \leq 2 \mathrm{GeV}$):
$x_{2}=\frac{p_{T}}{\sqrt{s}} e^{-\eta}$.

Small-x physics (and HERA) is relevant at the LHC

The bulk of particle production comes from very low-x ($p_{T} \leq 2 \mathrm{GeV}$): $x_{2}=\frac{p_{T}}{\sqrt{s}} e^{-\eta}$. LHC box: $p_{T}=1 \mathrm{GeV}, \sqrt{s}=5.5 \mathrm{TeV}, 0<\eta<7$ Nuclear targets amplify small-x effects: higher gluon-density,

Inclusive gluon production and dipole-proton forward amplitude in DIS

$$
\begin{aligned}
\frac{d \sigma^{\operatorname{mini}-j e t}}{d y d^{2} p_{T}} & =\frac{2 \alpha_{S}}{C_{F}} \frac{1}{p_{T}^{2}} \int d^{2} \vec{k}_{T} \phi_{G}^{h_{1}}\left(x_{1} ; \vec{k}_{T}\right) \phi_{G}^{h_{2}}\left(x_{2} ; \vec{p}_{T}-\vec{k}_{T}\right), \\
\phi_{G}^{h_{i}}\left(x_{i} ; \vec{k}_{T}\right) & =\frac{1}{\alpha_{s}} \frac{C_{F}}{(2 \pi)^{3}} \int d^{2} \vec{b} d^{2} \vec{r}_{T} e^{i \vec{k}_{T} \cdot \vec{r}_{T}} \nabla_{T}^{2} N_{G}^{h_{i}}\left(x_{i} ; r_{T} ; b\right), \\
N_{G}^{h_{i}}\left(x_{i} ; r_{T} ; b\right) & =2 N\left(x_{i} ; r_{T} ; b\right)-N^{2}\left(x_{i} ; r_{T} ; b\right) . \text { (connection to BK eq and DIS) }
\end{aligned}
$$

Kovchegov and Tuchin, 2002

- The relation between unintegrated-gluon density $\phi_{G}^{h_{i}}$ and the forward-dipole amplitude N is not a simple Fourier transformation.
- Impact-parameter dependence is not trivial.

K_{T}-factorization and CGC approach for inclusive gluon production

In pA collisions: Kovchegov and Mueller (98); M. A. Braun (2000); Kovchegov and Tuchin (2002); Dumitru and McLerran (2002); Blaizot, Gelis and Venugopalan (2004).

Collinear versus K_{T}-factorization, assuming universality of

K_{T} factorization :

Φ is not the canonical unintegrated gluon density, is it universal?

Inclusive gluon production and dipole-proton forward amplitude in DIS

$$
\begin{aligned}
\frac{d \sigma^{\text {mini }-j e t}}{d y d^{2} p_{T}} & =\frac{2 \alpha_{s}}{C_{F}} \frac{1}{p_{T}^{2}} \int d^{2} \vec{k}_{T} \phi_{G}^{h_{1}}\left(x_{1} ; \vec{k}_{T}\right) \phi_{G}^{h_{2}}\left(x_{2} ; \vec{p}_{T}-\vec{k}_{T}\right), \\
\phi_{G}^{h_{i}}\left(x_{i} ; \vec{k}_{T}\right) & =\frac{1}{\alpha_{s}} \frac{C_{F}}{(2 \pi)^{3}} \int d^{2} \vec{b} d^{2} \vec{r}_{T} e^{i \vec{k}_{T} \cdot \vec{r}_{T}} \nabla_{T}^{2} N_{G}^{h_{i}}\left(x_{i} ; r_{T} ; b\right), \\
N_{G}^{h_{i}}\left(x_{i} ; r_{T} ; b\right) & =2 N\left(x_{i} ; r_{T} ; b\right)-N^{2}\left(x_{i} ; r_{T} ; b\right) . \text { (connection to DIS) }
\end{aligned}
$$

Dipole-proton and dipole-nucleus forward amplitude

Impact-parameter dependent dipole-proton amplitude
b-CGC; describes HERA data $x<0.01, Q^{2}<40 \mathrm{GeV}^{2}$ with $\chi^{2}=0.92$.

Dipole-proton and dipole-nucleus forward amplitude

Impact-parameter dependent dipole-proton amplitude
b-CGC; describes HERA data $x<0.01, Q^{2}<40 \mathrm{GeV}^{2}$ with $\chi^{2}=0.92$.

Impact-parameter dependent dipole-nuclear amplitude

The only difference between p and A is the saturation scale: $Q_{s p} \rightarrow Q_{s A}$. $Q_{A}^{2}(x ; b)=\int d^{2} \vec{b}^{\prime} T_{A}\left(\vec{b}-\vec{b}^{\prime}\right) Q_{p}^{2}\left(x ; b^{\prime}\right)$.
Note: we have $Q_{A}^{2} \approx Q_{p}^{2} A^{1 / 3}$ since typical $b^{\prime} \ll b \sim R_{A}$.

On universality of saturation physics: calculating F_{2}^{A}

- The only different between p and A is the saturation scale: $Q_{s p} \rightarrow Q_{S A}$.
- $Q_{A}^{2}(x ; b)=\int d^{2} \vec{b}^{\prime} T_{A}\left(\vec{b}-\overrightarrow{b^{\prime}}\right) Q_{p}^{2}\left(x ; b^{\prime}\right)$.

$$
\frac{d N_{\text {hadrons }}}{d \eta}=\frac{\mathcal{C}}{\sigma_{n s d}} \int d^{2} p_{T} h[\eta] \frac{d \sigma^{\text {mini }-j e t}}{d y d^{2} p_{T}}
$$

(1) Hadronization at $p_{T} \leq 2 \mathrm{GeV}$: Local Parton-Hadron duality namely hadronization is a soft processes and cannot change the direction of emitted radiations (\mathcal{C}-factor). It works for $e^{+} e^{-}$annihilation into hadrons and etc...
(2) Calculate $\sigma_{n s d}=\sigma_{\text {tot }}-\sigma_{e l}-\sigma_{s d}-\sigma_{d d}$ in the same framework. Geometrical scaling: $\sigma_{n s d}=M \pi\left\langle\vec{b}_{j e t}^{2}\right\rangle=$ Area of interaction.
(3) Introduce mini-jet mass $m_{j e t}$ to regulaize the inclusive gluon cross-section (Pre-hadronization leads to the appearance of the mini jet mass).

We have only two free parameters \mathcal{C} and $m_{j e t}$ which will be fixed with the multiplicity data at low energy.

Hadron multiplicity in pp collisions without 7 TeV data

Levin and A.H.R., PRD 82, 014022 (2010)[arXiv:1005.0631]

- Only $d N / d \eta$ data for $p p$ at $\sqrt{s}=546 \mathrm{GeV}$ was used to fit two parameters. Results at other energies/rapidities are predictions.
- The band indicates about 2% theoretical error.

Hadron multiplicity in pp collisions with 7 TeV data

- Saturation model predictions: Levin and A.H.R.,PRD 82, arXiv:1005.0631
- CMS collaboration with 7 TeV: PRL 105, arXiv:1005.3299

Hadron multiplicity in $p p$ collisions from CMS

CMS Collaboration, arXiv:1011.5531

- In the above plot,it was assumed a fixed mini-jet $m_{j e t}=0.4 \mathrm{GeV}$ for all energies and rapidities. But $m_{j e t}^{2} \simeq 2 \mu<p_{T}>$, and $<p_{T}>\sim Q_{s}$ makes the agreement between CGC model prediction and CMS even more striking.

Differential yield of charged hadrons in pp collisions without 7 TeV data

Levin and A.H.R., PRD 82, 014022 (2010)[arXiv:1005.0631]

- $\left\langle p_{\text {hadron }, T}\right\rangle=\sqrt{\left\langle z p_{\mathrm{jet}, T}\right\rangle^{2}+\left\langle p_{\text {intrinsic }, T}\right\rangle^{2}}, z$ is the fraction of energy of the mini-jet carried by the hadron. $\left\langle p_{\text {intrinsic }, T}\right\rangle=m_{\pi},\langle z\rangle=0.48 \div 0.5$.

Differential yield of charged hadrons in pp collisions with 7 TeV data

Differential yield of charged hadrons in pp collisions with 7 TeV data

- The position of the peak is approximately at $p_{T} \simeq m_{j e t}\langle z\rangle$.
- CMS 7 TeV data confirmed the prediction for the position of the peak.

Differential yield of charged hadrons in pp collisions with 7 TeV data

- The position of the peak is approximately at $p_{T} \simeq m_{j e t}\langle z\rangle$.
- CMS 7 TeV data confirmed the prediction for the position of the peak.

Average p_{T} as a function of number of charged particles

Levin and A.H.R., PRD 82, 014022 (2010)

The ridge in pp collisions at the LHC from the CGC

(a) CMS MinBias, $\mathrm{p}_{\mathrm{T}}>0.1 \mathrm{GeV} / \mathrm{c}$

(c) $\mathrm{CMS} \mathrm{N} \geq 110, \mathrm{p}_{\mathrm{T}}>0.1 \mathrm{GeV} / \mathrm{c}$

(b) CMS MinBias, $1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

- Can be understood in the CGC framework of gluon saturation: Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi and Venugopalan, arXiv:1009.5295

Hadron multiplicity at LHC in AA collisions

Levin and A.H.R, PRD 82, 014022 (2010)[arXiv:1007.2430]

Centrality dependence at RHIC and LHC in AA collisions

Energy and $N_{p a r}$ dependence in $A A$ collisions

Predictions for $\mathrm{Pb}+\mathrm{Pb}$ collisions at the LHC at $\eta=0$

- $0-6 \%$ centrality $\operatorname{bin}(B \leq 3.7 \mathrm{fm})$:
$\sqrt{s}=2.75 \mathrm{TeV}: \quad d N_{A A} / d \eta=1152 \pm 81$
$\sqrt{s}=5.5 \mathrm{TeV}: \quad d N_{A A} / d \eta=1314 \pm 92$
- $0-5 \%, \sqrt{s}=2.76 \mathrm{TeV}: d N_{A A} / d \eta=1172 \pm 82$
- ALICE: $0-5 \% \rightarrow N_{p a r}=381$, Our: $0-5 \% \rightarrow N_{\text {par }}=374$

Hadron multiplicity in AA collisions and ALICE data

- $p p$ is for mini-bias NSD, $A A$ is $0-5 \%$, what is the value of $\sigma_{\text {inel }}^{p p}$ at 2.76 TeV ?. why at $0-5 \% N_{\text {part }}=381$ not 374 ?(this is not related to saturation).

ALICE data and surprises (The ALICE Collaboration, arXiv:1011.3916)

ALICE $0-5 \%$ corresponds to $N_{\text {part }}=381$ while our (Levin et al) $N_{\text {part }}=374$.
Therefore, our actual prediction for the same centrality bin will be higher.

The surprises are:

- The power-law behaviour in $A A$ is so different from $p p$.
- The models that describes DIS for proton, DIS for nucleus, the LHC data for proton and RHIC data apparently failed to describe the ALICE data with the same accuracy.

Our main differences with the KLN approach: The puzzle!

Kharzeev, Levin and Nardi (2001-2004) approach was very successful at RHIC.

- We used a different relation between the unintegrated gluon-density and the forward dipole-nucleon amplitude in the k_{t}-factorization.
- We keep impact-parameter dependence of the k_{t}-factorization.
- The relative increase of the $\sigma_{\text {nsd }}$ was calculated in our approach while in the KLN approach was taken from soft high-energy interactions.

Our main differences with the KLN approach: The puzzle!

Kharzeev, Levin and Nardi (2001-2004) approach was very successful at RHIC.

- We used a different relation between the unintegrated gluon-density and the forward dipole-nucleon amplitude in the k_{t}-factorization.
- We keep impact-parameter dependence of the k_{t}-factorization.
- The relative increase of the $\sigma_{\text {nsd }}$ was calculated in our approach while in the KLN approach was taken from soft high-energy interactions.
- We employed an impact-parameter dependent saturation model which was obtained from a fit to low Bjorken- x HERA data (no more freedom).
- In the KLN: the LHC saturation momentum was found via an extrapolation of the energy dependence of the saturation scale at RHIC in the BFKL region.

Our main differences with the KLN approach: The puzzle!

Kharzeev, Levin and Nardi (2001-2004) approach was very successful at RHIC.

- We used a different relation between the unintegrated gluon-density and the forward dipole-nucleon amplitude in the k_{t}-factorization.
- We keep impact-parameter dependence of the k_{t}-factorization.
- The relative increase of the $\sigma_{\text {nsd }}$ was calculated in our approach while in the KLN approach was taken from soft high-energy interactions.
- We employed an impact-parameter dependent saturation model which was obtained from a fit to low Bjorken- x HERA data (no more freedom).
- In the KLN: the LHC saturation momentum was found via an extrapolation of the energy dependence of the saturation scale at RHIC in the BFKL region.
- We described $p p, e p$ and $e A$ data within the same model.

ALICE versus HERA and RHIC

- Looks like it is difficult to describe at the same time HERA, RHIC and ALICE!!

Main conclusion:

The CGC approach provided correct predictions for 7 TeV data for pp

- Multiplicity distribution.
- Inclusive charged-hadron transverse-momentum distribution.
- The position of peak in differential yield.
- Average transverse momentum of the produced hadron on energy and hadron multiplicities.
- It also describes $e p, e A$ and $A A$ (at RHIC) within the same model.

Main conclusion:

The CGC approach provided correct predictions for 7 TeV data for pp.

If ALICE data on AA will be confirmed by ATLAS and CMS:

- Saturation models gave correct predictions for multiplicity in $A A$ collisions at the LHC within about less than 20% error. Indeed, this is not horribly bad given the simplicity of the approach.
$>$ What is the role of final-state effects?
$>$ How the mini-jet mas changes with energy/rapidity in a very dense medium?
> What is the effects of fluctuations and pre-hadronization?

Main conclusion:

The CGC approach provided correct predictions for 7 TeV data for pp .

If ALICE data on AA will be confirmed by ATLAS and CMS:

- Saturation models gave correct predictions for multiplicity in $A A$ collisions at the LHC within about less than 20% error. Indeed, this is not horribly bad given the simplicity of the approach.
$>$ What is the role of final-state effects?
$>$ How the mini-jet mas changes with energy/rapidity in a very dense medium?
> What is the effects of fluctuations and pre-hadronization?
- Recall: gluon production in $A A$ collisions is still an open problem in the CGC.
$>$ We should examine more carefully the k_{T} factorization for $A A$ collisions.

Main conclusion:

The CGC approach provided correct predictions for 7 TeV data for pp .

If ALICE data on AA will be confirmed by ATLAS and CMS:

- Saturation models gave correct predictions for multiplicity in $A A$ collisions at the LHC within about less than 20% error. Indeed, this is not horribly bad given the simplicity of the approach.
$>$ What is the role of final-state effects?
$>$ How the mini-jet mas changes with energy/rapidity in a very dense medium?
$>$ What is the effects of fluctuations and pre-hadronization?
- Recall: gluon production in $A A$ collisions is still an open problem in the CGC.
$>$ We should examine more carefully the k_{T} factorization for $A A$ collisions.
- We should rethink about saturation models, how it changes from ep, $p p, e A$ collisions to $A A$ collisions.

Back-up:Impact parameter dependent dipole-proton forward amplitude and DIS

Kt-factorization depends on impact-parameter. Moreover, impact-parameter dependence is crucial here in order to relate $d \sigma / d y \rightarrow d N / d y$.

Back-up:Impact parameter dependent dipole-proton forward amplitude and DIS

Kt-factorization depends on impact-parameter. Moreover, impact-parameter dependence is crucial here in order to relate $d \sigma / d y \rightarrow d N / d y$.

- b-dependent numerical solution to the BK eq is not yet available.
- Higher-order corrections to the BK(or JIMWLK) eq is not yet available.

Back-up:Impact parameter dependent dipole-proton forward amplitude and DIS

Kt-factorization depends on impact-parameter. Moreover, impact-parameter dependence is crucial here in order to relate $d \sigma / d y \rightarrow d N / d y$.

- b-dependent numerical solution to the BK eq is not yet available.
- Higher-order corrections to the BK(or JIMWLK) eq is not yet available.
- We use b-CGC dipole model which satisfies all well-known properties of the low- x physics (and BK eq): geometric-scaling, etc...

$$
\begin{gathered}
N(Y ; r ; b)= \begin{cases}N_{0}\left(\frac{\mathcal{Z}}{2}\right)^{2\left(\gamma_{s}+\frac{1}{\kappa \lambda Y} \ln \left(\frac{2}{\mathcal{Z}}\right)\right)} & \text { for } \mathcal{Z}=r Q_{s}(x) \leq 2 ; \\
1-\exp \left(-A \ln ^{2}(B \mathcal{Z})\right) & \text { for } \mathcal{Z}=r Q_{s}(x)>2 ;\end{cases} \\
Q_{s}(x ; b)=\left(\frac{x_{0}}{x}\right)^{\frac{\lambda}{2}} \exp \left\{-\frac{b^{2}}{4\left(1-\gamma_{c r}\right) B_{C G C}}\right\} \quad \lambda=0.11
\end{gathered}
$$

Watt and Kowalski (2008); Iancu, Itakura and Munier (2004).

Back-up: Physical observables from inclusive mini-jet production

$$
\frac{d N_{\text {hadrons }}}{d \eta}=h[\eta] \frac{\mathcal{C}}{\sigma_{n s d}} \int d^{2} p_{T} \frac{d \sigma^{\text {mini-jet }}}{d y d^{2} p_{T}}
$$

- 5: In past (e.g. KLN's papers) $\sigma_{\text {nsd }}=\sigma_{\text {tot }}-\sigma_{e l}-\sigma_{s d}-\sigma_{d d}$ taken from soft interaction models. But this is not consistent within the same picture!! Note: experimental data on $\sigma_{d d}$ is very limited, $\sigma_{s d}$ is measured with rather large errors and even for the total cross-section $\sigma_{\text {tot }}$ we have two values at the Tevatron.
- $\sigma_{\text {nsd }}=M \pi\left\langle\vec{b}_{j e t}^{2}\right\rangle=$ Area of interaction
> The geometric-scaling: partons are distributed uniformly in the transverse plane in the wave-function of a fast hadron in a such way that the wave-function generates a uniform distribution of the produced partons after the interaction with the target. Therefore, the NSD (inelastic) cross-section is proportional to the area occupied by partons.
> The elastic (diffractive) cross-section corresponds to a rare event where the target does not destroy (only partially) the coherence of the gluons in the wave-function.

Back-up: Physical observables from inclusive mini-jet production

$\mathrm{B}_{\mathrm{CGC}}=7.5 \mathrm{GeV}^{-2}$
$\left\langle\mathrm{R}^{2}\right\rangle \sim 2 \mathrm{~B}_{\mathrm{CGC}}$

Geometrical-scaling of scattering amplitude:

- $\sigma_{n s d}=M \pi\left\langle\vec{b}_{j e t}^{2}\right\rangle=$ Area of interaction

$$
\left\langle\vec{b}_{j e t}^{2}\right\rangle=\frac{\int \frac{d^{2} p_{T}}{p_{T}^{2}} \int d^{2} \vec{b} d^{2} \vec{B} d^{2} r_{T}\left(b^{2}+|\vec{b}-\vec{B}|^{2}\right) e^{i \vec{k}} \cdot \vec{r}_{T}}{\int \frac{d^{2} p_{T}}{p_{T}^{2}} \int d^{2} \vec{b} d^{2} \vec{B} d^{2} r_{T} e^{i \vec{k}} \vec{k}_{T} \cdot \vec{r}_{T}\left(x_{1} ; r_{T}^{2} ; b\right) N_{G}^{h_{1}}\left(x_{1} ; r_{T} ; b\right) \nabla_{T}^{2} N_{G}^{h_{2}}\left(x_{2} ; r_{T} ;|\vec{b}-\vec{B}|\right)} .
$$

Back-up: The position of peak is connected to the saturation scale

- $\frac{d^{2} N}{d \eta d p_{T}} \propto \frac{2 \pi p_{T}}{p_{T}^{2}+\langle z\rangle^{2} m_{j e t}^{2}} \mathcal{F}\left(x_{1}, x_{2}, p_{T}\right)$
- The position of the peak is then approximately at $p_{T} \simeq m_{j e t}\langle z\rangle \approx 0.2 \mathrm{GeV}$ since we have $\langle z\rangle \approx 0.5$ and $m_{j e t} \approx \sqrt{2 \mu Q_{s}} \approx 0.4 \mathrm{GeV}$

Back-up: Nuclear modification factor at the LHC: Geometric scaling

$$
\frac{d \sigma}{d y d^{2} p_{T}} \|_{y=0},=\frac{2 C_{F}}{\alpha_{s} 2(2 \pi)^{3}} \frac{1}{x_{\perp}^{2}} \int d^{2} b d^{2} B \int_{-\infty}^{+\infty} d z e^{-z} J_{0}\left(e^{\frac{1}{2} z} x_{\perp}\right) \nabla_{z}^{2} N_{G}(z ; b) \nabla_{z}^{2} N_{G}(z ;|\vec{b}-\vec{B}|)
$$

with $z=\ln \left(r^{2} Q_{s}^{2}\right)$ and $x_{\perp}=p_{T} / Q_{s} . K_{T}$ factorization has geometric-scaling property at $y=0$.

$$
R_{A A} \equiv \frac{1}{A^{2}} \frac{S_{A}^{2}}{S_{p}^{2}} \frac{\mathcal{T}\left(x_{\perp}\right)}{\mathcal{T}\left(x_{\perp} \frac{Q_{s, A}}{Q_{s, N}}\right)}
$$

- Beyond the extended geometric-scaling region for $p_{T}>3 \div 4 Q_{s}$ one may expect that inclusive cross-section for $A A$ and $p p$ to be $\alpha_{s}\left(p_{T}^{2}\right) / p_{T}^{4}$ and $R_{A A} \rightarrow 1$. But this is not the case!

Back-up:Nuclear modification factor at RHIC

- What make $R_{A A}$ to be so small even at high- p_{T} ?
- What make $R_{A A}$ to be flat at high- p_{T} ?, what is the onset of flatness?
- Can it be calculated perturbatively?

For the detailed answers see: Kormilitzin, Levin and A.H.R, arXiv:1011.1248

$$
\begin{aligned}
\left.\frac{d \sigma_{A A}}{d y, d^{2} p_{T}}\right|_{y=0}= & A^{2} \frac{\alpha_{s}^{2}\left(p_{T}\right)}{p_{T}^{4}} x_{1} G_{p}\left(x_{1}=2 p_{T} / \sqrt{s}, p_{T}\right) x_{2} G_{p}\left(x_{2}=2 p_{T} / \sqrt{s},-p_{T}\right) \\
& \xrightarrow{p_{T} \gg Q_{0}} A^{2} \frac{\alpha_{s}^{2}\left(p_{T}\right)}{p_{T}^{4}}\left(p_{T}^{2} / Q_{0}^{2}\right)^{2 \gamma}
\end{aligned}
$$

$$
\begin{array}{lll}
R_{A A}^{g} & \xrightarrow{\sqrt{s} \gg p_{T} \gg Q_{s}} 1 \\
R_{A A}^{h} & \xrightarrow{\sqrt{s} \gg p_{T} \gg Q_{s}} & \frac{\alpha_{s}^{2}\left(p_{T} / z_{A}\right)\left(p_{T} / z_{A}\right)^{4 \alpha_{s}\left(p_{T} / z_{A}\right)}}{\alpha_{s}^{2}\left(p_{T} / z_{h}\right)\left(p_{T} / z_{h}\right)^{4 \alpha_{s}\left(p_{T} / z_{h}\right)}} \times\left(\frac{z_{A}}{z_{h}}\right)^{4}
\end{array}
$$

- If $z_{A}=z_{h}$, then $R_{A A}=1$.
- At RHIC $z_{A} / z_{p} \approx 0.76$ we have $R_{A A}^{h} \approx 0.3$ at high- p_{T}.
- $R_{A A}$ is flat at high- p_{T} since p_{T} dependence mainly appears in α_{s}.

Backup: $R_{A A}$ at RHIC and prediction for the LHC

Kormilitzin, Levin and A.H.R, arXiv:1011.1248

