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**Forward energy flow
‘*Forward jets
s*Charge assymetry of atmospheric muons
**Pseudorapidity distribution of charged particles
***Prospects
*Summary
Reflected mainly a Boginning of study.There are many

more regsults at preliminary statug whick wiél 6e
pregented in near future
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CS event

CMS Experiment at the LHC, CERN
Date Recorded: 2009-11-23 19:21 CET
Run/Event: 122314/1514552

Candidate Collision Event 900 GeV




CMS forward detectors

(2.9< |n| <5.2) (2.9<|n|<5.2)

(n|>84) (3.2<In[<6.6) (| > 8.4)
Hadronic Forward calorimeters (HF)
* located at 11.2 m from IP  * rapidity coverage 2.9 <|n|< 5.2
on both sides of CMS

B i » Cerenkov calorimeter made of
steel absorbers and embedded
radiation-hard quartz fibers, light Only HF results are presented'
from the fibers detected by PMT ReSults from Other forward

* 2 types of fibers: long (run over calorimeters are in preparation.

the full depth) and short (start
at 22 cm from the front of HF)
- possible to distinguish showers
generated by e/y from showers
generated by hadrons

* 13 rings in n with a segmentation
An = 0.175 (except for the 2
most inner rings and the most
outer one)
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Diffraction
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Why diffraction?

v’ Diffraction is a difficult for treatment background when non-
diffractive physics is to be studied due to trigger and offline
selection limitations.

v’ Diffraction proceeds via pomeron exchange i.e. pomeron is
object of diffractive study & pomerons govern ultra-high energy
interactions, both diffractive and non-diffractive.

v'At HERA, main arguments for appearance of saturation were
extracted from diffractive data.

LHC p-p diffraction, although more complicated than HERA y-p
diffraction, due to much higher energies, could also provide
valuable signatures of saturation. Treatment of non-linear effects
is crucial ingredient of CR generators providing largest diversity
of results of EAS simulation.
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Diffraction: selection

Trigger

®* Beam bunches crossing the IP (beam pickups - BPTX)
* One hit in Beam Scintillator Counters (BSC)

Event selection

e Collision vertex: primary vertex with good quality and well
centered (important: this requirement kills low mass diffraction)

e Beam Halo rejection (from BSC)

e Beam background rejection

e Filtering of events with characteristic noise in calorimeters

e High trigger efficiency (cross checked with Zero-bias stream)
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Diffraction in CMS
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Diffraction efficiency

o 09— T T
Q g ‘ ' '
¢ -> fractional momentum loss of the S %% S
. -— 2 ‘E_ 0.7¢ 'L: 0.02
scattered proton : §=(M,)?/s 8 o6f £ oo
< o5
Low efficiency for selecting events which: 0.4}
. . 0.3f
i) escape undetected with very low § value: ook oo e
ii) have almost no charged activity. ol PYTHIA SD
: ==~ PHOJET SD
0' ||||||||||||||||||||||||||||||||||||||

PYTHIA6 and PHOIJET substantially
differently model diffraction and provide
different selection efficiencies.
Single-diffractive efficiency:

900 GeV: 18% (PYTHIA), 32% (PHOJET)
2360 GeV: 20% (PYTHIA), 37% (PHOIJET)
Double-diffractive efficiency: al

900 GeV: 15% (PYTHIA), 41% (PHOIJET) 0.2}
2360 GeV: 18% (PYTHIA), 45% (PHOIJET) 0.1

Acceptance

\'s=2.36 TeV
— PYTHIA SD

"=""PHOJET SD
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Diffraction: min-bias results
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The bands illustrate effect of a 10% energy scale uncertainty in the calorimeters
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Enhancing diffractive component

Requiring low activity on one side (HF+ or HF-) 2>
- enriched by diffractive events sample..

E(HF+) <8 Gev 900 GeV
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»PYTHIAG overpredicts low masses and underpredicts high masses.
»PHOIET consistent with data.
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Diffractive dijet

Diffractive dijet candidate at 7 TeV - CMS
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E(N<3.0)>15GeV ps(track) > 0:5GEV [p, (jet1) = 41.2 GeV, p; (jet2) = 31.9 GeV
E(n=3.0) > 2.0 GeV n (jet1) =-2.8, n (et2) =-3.3
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Moving forward

525[)
» Acceptance-corrected fraction of diffractive 3s
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A. Vilela Pereira
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Forward energy flow
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1/N,, dE/dy (GeV)

Rapidity distribution of energy flow
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There is large diversity of treatment
of target fragmentation both in
HEP and CR generators which could
result in large differencies of
produced particles spectra in
forward region. Measurements of
energy flow at forward rapidities in
CMS (HF & CASTOR) will be highly
useful in fixing forward region and
together with ZDC constraining
treatment of proton remnant.
Forward region is of crucial
importance for CR since it contains
main release of energy from primary
to secondaries, that release
determining shower development.

16



Forward energy flow in CMS: why and how

Measurement of forward energy flow by CMS

Motivation

« sensitive to parton radiation and to
multi-parton interactions

« complementary to measurements in central region

Strategy:
« measurement of forward energy flow in HF (3 <Inl <5.2)
- “minimum bias” events and CASTOR (5.2 < -1) < 6.6)

- events with a hard central dijet system with
Inl < 2.5, [A@(j1,j2) — 1] < 1.0, p, > 8 (20) GeV at Vs = 0.9, 2.36 (7) TeV

§|o’ ms)-mo GeV e %E&m ng :ﬁmz?:ggo&v —— %g;‘.::m
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10? ;_:"'-'i' / N
¥ wf L
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- MPI sensitivity enhanced in dijet events!
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Comparison with Pythiaé and PHOJET
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Forward energy flow: selection

* Minimum Bias events selection

— Trigger signal in each of the BSC in coincidence with a signal
from both BPTX (rejects large fraction of diffractive events)

— Good primary vertex

— Rejection of beam halo candidates & beam background
events

— Rejection of events with large and isolated signal in HF
— Threshold 4 GeV on energy of HF towers to avoid noise

* Dijet events selection
— Jets reconstructed by anti-kT jet algorithm (R = 0.5)
— At least two leading jets with | n | <2.5 & | Ap(j1,j2)-nt| <1
— pT>8GeV (vs =900 GeV or 2.36 TeV), pT > 20 GeV (7 TeV)
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Transverse energy flow in minimum bias events

CMS Preliminary
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Measured energy flow increases more strongly with centre-of-mass
energy than predicted by any of Monte Carlo.

At 900 GeV, energy flow is satisfactorily described by D6T tune,
whereas other PYTHIAG6 tunes and PHOJET are below measurement.
At 7 TeV, predicted energy flow in minimum bias events is below
measurement for all tunes.
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Transverse energy flow in events with dijet
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In dijet sample, increase of energy flow with centre-of-mass energy
is much better reproduced by Monte Carlo than in min-bias sample.
Unlike min-bias events, best description of measurements provides
PROQ20 tune of Pythia, whereas D6T is above data and PO tune of
Pythia and Phojet are below data.
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Forward jets
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Event with forward jet

Aho Phi e = A0 Lego

CMS Experiment at the LHC, CERN

Date Recorded: 2009-12-1120:52:12 CEST
Run/Event: 124009/185654

Candidate dijet event at 900GeV

1jetwith p,>10GeVand3.0<|n| <5.0 Jet1l:p _=13.4GeV, n=4.10and ¢ =1.34
E. cut on CaloTowers displayed > 0.3 GeV  Jet2: p, =13.8 GeV, n=-0.15and ¢ =-2.40




Inclusive forward jets

g e ] C A inpop imtoractions
o 'E" Detector Level ;T(jet) > 35 GeV M simulation ) ’ ’
Zg 0 Probes small-x content of proton.
45 Could reveal invalidity of DGLAP evolution
- e expected to happen at small x and
0l signatures of BFKL evolution.
10*";
10°. Jet selection
0 GevielT —3.2 < In| <4.7
fE ey e PP 20GeV
15 © et Lovern g s5Gov B simuiaton —Anti-kT algorithm (R>0.5)
z —Detector-level distributions,

——

no systematics

T IIIIIHI

Reasonable agreement with MC
(Pythia6 D6T)

107"

T IIIIIIW

10?7

5
Jet n|
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Cosmic muons
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Charge assymetry of atmospheric muons

Atmospheric Muons

Stem from cosmic ray showers,
produced via interactions of
high-energy cosmic-ray particles
(nuclei), entering the upper
layers of the atmosphere, with
air nuclei:

(p, He, ..., Fe) = hadrons, e*y
(7, K*) = 11* Vi (V) and

U* = e* Ve Vyu (Ve V)

Long-lived muons cross the
overburden and reach CMS.

November 30, 2010
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Cosmic muon

Typical cosmic muon event

High quality muon tracks in all subdetectors, similar to
those expected from pp interactions.

33
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Charge assymetry of atmospheric muons

CMS 2006-2008 preliminary CMS 2006-2008 preliminary
1.8 R l R I e ] Y 1.8 LR ! TTTTT] T T T
i I L 4 CMS
i I - —+ MINOS
1.6 | i 16l Utah B ]
Tl : "7 | 4 OPERA A |
| —¢— L3+C
i i - ---- Schreiner et al
x4 . 9y T 14 —-CMS Fit
1.2F - Il 12k
1_ Ll Lol L0 il B ||— 1_ | | | N
10 102 10° 10 10° 10°
p (GeV/c) p - cos6, (GeV/c)

» Most precise measurement of the muon charge ratio below 100 GeV

» Spanning within single experiment broad range 10 GeV — 1 TeV of
transition from about constant to rising ratio

» Confirming other experiments climing rise of ratio.
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Charged particles
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CR generators vs CMS

Pseudorapidity distribution of charged particles

— EPOS1.99 p+p—chrg  NSD
7 | . QGSJETH 7000 GeV )

oy b } 4.,;’ Highly increasing spread
S0 O between generators

with increase of energy

from 900 GeV to 7 TeV.

dnidy

-5 -4 -2 0 2 4 6
pseudorapidity n

Measurement: hadron trigger + correction based on PYTHIA

Meodels: theoretical non-single diffractive events
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Forward prospects
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CMS + TOTEM

1-hard CMS

(3.0 < |n| < 5.0)

(3.0 <n| <5.0) =

L L a]

(Inl > 8.4) (In| > 8.4)
(5.2 <n| < 6.6) s e (5.2 < [n| < 6.6)

T2 perfectly fits CASTOR in 1 range.
Complementing T2 coordinates & CASTOR energy
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CMS + TOTEM + FP420
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e Diffractive signal clearly identified with different methods,
comparison with MC generators performed on detector level.
Pythia6 and POJET fairy well describe diffractive signal in minimum
bias events.

e Large increase of forward energy flow with energy of interaction is
not reproduced by MC in minimum bias events and fairy well
reproduced in events with dijet.

e First results on forward jets at highest achieved for p-p n shown.

e Most precise measurement of muon charge ratio below 100 GeV,
ratio is measured over broad range 10 GeV — 1 TeV of transition
from approximately constant to rising value.

e Data on charged particle rapidity distribution are of high
discriminative power for CR generators.
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Diffraction for Cosmic Rays

My note:

Contrary to common delusion, low-mass diffraction, which
constitutes main part of diffractive cross-section, is much less
relevant to shower development than non-diffractive interactions.
Dissipation of energy and energy transfer from charged to neutral
component determine rate of shower development. Both are much
smaller in diffractive interactions than in non-diffractive.

Evidently, elastic interactions, where either of above factors are
absent, do not influence shower development. Diffraction is
somewhat in between elastic and non-diffractive interactions.

But: important is consistency between diffractive cross-section

and particle production in diffractive process as they implemented in
simulations. It is inconsistency that enhances sensitivity of shower
development to accounting for diffraction.
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Trigger

Ty

“% Minimum Bias Trigger D sy

BSC1 J.I t == ﬂLI . BSC1

HF+ +10.9m%* e "-10.9m HF-
BSC2 +11.2m =1 -11.2m BSC2

+14.4m BSC === BPTX -144m

==

BPTX
-175m

@ Trigger :

¢ any hit in the beam scintillator counters (BSC)
AND

¢ filled bunch passing the beam pickups (BPTX)
@ Offline event selection :

¢ 3 GeV in both sides of the HF

J rejection of the beam halo using BSC timing

¢ beam induced background rejection
(pixel cluster shapes)

¢ atleast a reconstructed vertex near the collision
point

Sep 10 @G. Dissertori : QCD Results from CMS 57
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Meaning of E £ p,

roton 1
% X » 2(E £ p,) runs over all calo towers

Pomeron s
pPomeron —> X » Measure for the momentum of the

W\\ Pomeron = momentum loss of the proton

Momentum and energy conservation:
E(Pomeron) + E(proton 1) = E(X)
p,(Pomeron) + p,(proton 1) = p,(X)

—
s o

Recall: in SD events proton loses almost none of its initial momentum.

If proton 1 moves in positive z direction: E(proton 1) - p,(proton 1) = 0 (and
proton 2, and Pomeron, move in the negative z direction)

Hence:
E(Pomeron) - p,(Pomeron) = 2E(Pomeron) = E(X) + p_(X)

i.e. £ = 2E(Pomeron)/s = (E(X) + p,(X))"s

A.Vilela Pereira
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Cosmic muon charge ratio

® Muon energy spectrum underground (vertical muons, cosB=1):

[if.""ﬁ"l A | }
dE,] ~ 7)1 4+ HEewd T

(.054

1.1 ||I',III s

014k =7

cm? s sr GeV

b

® Both mand K contribute, € is the energy where the probability of meson

interaction and decay are equal: €; =

115 GeV and €k = 850 GeV.

® Generalizing for U* and Y, the measured charge ratio on surface is:

w + v - v
N# { £ 0.054 % fx |,
- — 3 — g _— /
N L.1E 4 cosd L1k 4 cosé
L+ 18 cev L+ b aev
{ 1—f, 0.054 % (1 —f;{]}
1.1 E.u_ cos f ) I-IEJ.— s
1+ 115 GeV 1+ S50 eV

® From L3+C, fn = 0.555(2) and fk = 0.667(7). These values imply the
muon charge asymmetry induced by mand K is

r-;; = f-;[_.l'f (l'fx) = ]25 i':lﬂd

rk = fic / (1-fix) = 2
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