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Introduction: Why Minimum Bias Events?
The bird’s eye view

I name suggests: most complete view of physics
(at the LHC or any other experiment)

I as such: intellectual challenge
up to now no complete model including all facets -
elastic scattering, diffractive events & hard jets -
on the same footing

I intimate connection to underlying event
I first day physics at the LHC

For example
I Higgs search strategies at LHC largely rely on event

topologies with rapidity gaps (VBF process, diffractive
Higgs, . . . )

I essential for S/B: rapidity gap and its survival probaility
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Introduction: Why Minimum Bias Events?

Upshot
I gap survival depends on: extra jets & underlying event
I only former calculable from first principles (PT)
I underlying event completely model dependent
I general problem: access to implementable models that

(analytically) predict rapidity gap survival probability
I need a straw-man to test and validate ideas:

central diffractive production processes
I therefore important to have model embedding hard and

semi-hard QCD, diffraction, elastic scattering
I so far, no such a model has never been directly

implemented in a standard MC like Pythia, Herwig
etc. - only specific codes available (e.g. ExHume)
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s-Channel Unitarity and Cross Sections
I optical theorem relates total cross section σtot to elastic

forward scattering amplitude A(s, t) through

σtot(s) =
1
s Im[A(s, t = 0)]

I rewrite A(s, t) as A(s, b) in impact parameter space

A(s, t = −q2
⊥) = 2s

∫
db eiq⊥·bA(s, b)

I cross sections

σtot(s) = 2
∫
db Im[A(s, b)]

σel(s) = 2
∫
db |A(s, b)|2

σinel(s) = σtot(s)− σel(s)

I N.B.: real part of A(s, b) vanishes
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Single-Channel Eikonal Model
I in eikonal model elasic amplitude given by sum of all

Regge exchange diagrams:

A(s, b) = i
(
1− e−Ω(s,b)/2

)
I Ω(s, b) is called eikonal or opacity
I eikonal is Fourier transform of two-particle irreducible

amplitude a(s, q⊥)

Ω(s, b) =
−i
4π2

∫
dq⊥ eiq⊥·b⊥a(s, q⊥)

I pictorially:

ImA(s, b) =
∞∑

n=1

n

Ω(s, b⊥)
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Single-Channel Eikonal Model
I cross sections in eikonal model

σtot(s) = 2
∫
db
(
1− e−Ω(s,b)/2

)
σel(s) = 2

∫
db
(
1− e−Ω(s,b)/2

)2
σinel(s) =

∫
db
(
1− e−Ω(s,b)

)
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Multi-Channel Eikonals

Motivation
I impossible to describe “diffractive excitation” (like e.g.

p → N(1440)) with one eikonal only: such processes
are a consequence of the internal structure of the
colliding hadrons

I for description employ high-energy limit:
in this limit the Fock states of the hadrons “frozen”,

(lifetime of fluctuations τ = E/m2 large)

and each component can interact separately, destroying
coherence of the colliding hadrons
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Multi-Channel Eikonals

Good-Walker states
I introduce Good-Walker states (diffractive eigenstates):
|p〉 =

∑
i

ai |φi〉, where 〈φi |φk〉 = δik and
∑
i
|ai |2 = 1

I these states diagonalise the T -matrix:
〈φi |ImT |φk〉 = T D

k δik
I therefore only “elastic scattering” of these states
I N.B.: use two states (more later),

|p, N∗〉 = 1√
2 [|φ1〉 ± |φ2〉],

related to two different form factors,

F1,2(q⊥) = β20(1± κ)
exp

[
− (1±κ)ξq2

⊥
Λ2

]
[
1 +

(1±κ)q2
⊥

Λ2

]2
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Multi-Channel Eikonals

Cross sections with Good-Walker states
I decompose incoming state |j〉 = ajk |φk〉 and write

〈j |ImT |j〉 =
∑
k
|ajk |2Tk ≡ 〈T 〉

I allows to write cross sections as

dσtot
db = 2Im〈j |T |j〉 = 2〈T 〉

dσel
db = |〈j |T |j〉|2 = 〈T 〉2

dσel+SD
db = |〈φk |T |j〉|2 =

∑
k
|ajk |2T 2

k = 〈T 2〉

dσSD
db = 〈T 2〉 − 〈T 〉2

I single diffraction given by statistical dispersion of
absorption probabilities of diffractive eigenstates
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Khoze-Martin-Ryskin Model

Bare Pomeron Contribution
I evolution equation for elastic bare Pomeron exchange

amplitude
dΩk(y)

dy = ∆Ωk(y)

where ∆ = αP(0)− 1

Ωk(y = 0)k k kk

Ωk Ωk

I can be interpreted as evolution of parton density of
“hadron” k with ∆ being probability for emitting an
additional gluon per unit rapidity
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Khoze-Martin-Ryskin Model

Rescattering
I high density & strong coupling regime → rescattering

important (⇐⇒ large triple pomeron vertex)
I sum over rescattering/absorption diagrams on k and i

dΩk(y)

dy = ∆Ωk(y)e−λ[Ωk (y)+Ωi (y)]/2

with λ = g3P/gPN

I multi-pomeron diagrams give rise to high mass
dissociation
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Khoze-Martin-Ryskin Model

Boundary Condition
boundary condition for parton densities: hadron form factor

Ωi (b1,b2,−Y /2) = Fi (b2
1)

Ωk(b1,b2,Y /2) = Fk(b2
2)

Eikonal
eikonal given by overlap of parton densities

Ωik(b) =

1
2β20

∫
db1db2 δ

2(b− b1 − b2)Ωi (b1,b2, y)Ωk(b1,b2, y)
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Selecting the Modes
I select elastic vs. inelastic processes according to

σpp
tot = 2

∫
db

S∑
i ,k=1

{
|ai |2|ak |2

[
1− e−Ωik (b)/2

]}

σpp
inel =

∫
db

S∑
i ,k=1

{
|ai |2|ak |2

[
1− e−Ωik (b)

]}

σpp
el =

∫
db


S∑

i ,k=1

[
|ai |2|ak |2

(
1− e−Ωik (b)/2

)]
2
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Selecting Gross Features of Scattering Mode
I if elastic is chosen, fix t according to

dσel
dt =

1
4π


∫
db eiq⊥·b

∑
i ,k

[
|ai |2 |ak |2

(
1− e−Ωik (b)/2

)]
2

.

I if inelastic is chosen, fix {ik} according to partial
contribution and b according to integrand,

Pik(b) = πb
(
1− e−Ωik (b)

)
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Inelastic Scattering: Generating Ladders
I assume no correlations between ladders
I select (naive) number of (primary) ladders to be

exchanged according to Poissonian:

Pn=Nnaive−1 =
[Ωik(b)]n

n!
exp[−Ωik(b)]

I for each ladder, fix b1,2 with b = b1 + b2:

dΩik(b)

db1
=

1
2Ωi (b1,b2)Ωk(b1,b2)
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Inelastic Scattering: Generating Ladders
I for each ladder pick incoming particles:

primary (beam particles) or secondary (rescattering)

I σ̂prim =
x1f1(x1, 0)x2f2(x2, 0)

2ŝ

(
ŝ

ŝmin

)1+η

I σ̂sec =
1
2ŝ

(
ŝ

ŝmin

)1+η

I η = ∆ exp
[
−λ2

(
Ωi(k)(b1, b2, 0) + Ω(i)k(b1, b2, 0)

)]
I ŝmin calculated for each eikonal separately
I need infra-red continued pdf’s

I after each ladder, check momentum of incoming
hadrons
if E1 or E2 exhausted terminate exchanging ladders
therefore Nladders ≤ Nnaive
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Inelastic Scattering: Generating Emissions
I assume emissions to be ordered in rapidity
I generate emissions with Sudakov form factor

S(y0, y1) = exp

−
y1∫

y0

dy
∫

dk2
⊥
αs(k2

⊥ + K 2
0 )

(k2
⊥ + K 2

0 )

×
[

K 2
0

q2 + K 2
0

] 3αs (q2+K2
0 )

π
|y−y0|

× exp
[
−λ2

(
Ωi(k)(y) + Ω(i)k(y)

)]
⇒ Regge dynamics generates dynamical Pomeron intercept

with 〈∆〉 = 0.1 . . . 0.2
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Inelastic Scattering: Generating Emissions

for each emission
I generate gluon’s rapidity from Sudakov form factor
I construct kinematics
I for each t-channel propagator select colour

(assume only colour singlet and octet exchange)

P1 ∝
{
1− exp

[
−1
2

(
Ωi (yi+1)

Ωi (yi )
− 1

)]}2

after having filled the entire ladder
I find hardest octet exchange and correct with ME to

account for correct form of parton-parton scatter
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Elastic Cross Section
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Minimum Bias from CDF (pp̄ @1800GeV)
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Minimum Bias from CDF (pp̄ @1800GeV)
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Minimum Bias from CDF (pp̄ @1800GeV)
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Minimum Bias from CDF (pp̄ @1800GeV)

b

b

b

b

b
b

b
b

b
b b

b
b

b

b

b

b

b

b

b

b

CDF datab

MC (default ue)

0

1

2

3

4

5

6

7

8
Nch (away) for min-bias

N
ch

0 5 10 15 20

0.6

0.8

1

1.2

1.4

plead⊥ / GeV

M
C
/
d
a
ta

b

b

b

b

b

b

b

b
b

b

b b

CDF datab

MC (default ue)

10−4

10−3

10−2

10−1

1

p⊥ distribution (transverse, plead⊥ > 5 GeV)

1
/

σ
d

σ
/
d
p
⊥

1 2 3 4 5 6

0.6

0.8

1

1.2

1.4

p⊥ / GeV

M
C
/
d
a
ta



Minimum Bias in
Sherpa

Korinna Zapp

Introduction

KMR Model

MC Realisation

First Results

Conclusions &
Outlook

Conclusions
I understanding of minimum bias physics an essential

part of first years of running at the LHC
I potentially important signals depend on our

understanding of minimum bias
I various models on the market, most sophisticated ones

so far basing on eikonal picture
I convincing model for inclusive properties by KMR
I however, up to now no model available that describes

all aspects of minimal bias (total xsec, elastic scattering,
diffraction, jet production) in one unified framework and
is capable of modelling exclusive final states

I started implementing a model based on KMR
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Outlook
I Next steps (short timescale):

I validate the physics/tune the parameters
I single and double low-mass diffraction (implemented

but requires validation)
I formulate as underlying event model (easy but has to be

implemented)
I formulate as model for dynamic generation of intrinsic

k⊥
I publish the module as part of Sherpa 1.3.

I Near future:
I include secondary Reggeon (quarks!)
I allow for open and closed heavy flavour production
I include k⊥ dependence into differential equations
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Multi-Channel Eikonals

Comments
I if all components of j , i.e. all eigenstates φk ,

experienced same absorption:
−→ dispersion vanishes
−→ diffractive production cross section vanishes

I this happens in black disc limit (Tk = 1), at small b
I consequence: already at Tevatron energies diffractive

production processes due to large b
I this region responsible for small t components
I also: there eikonal (equivalent to optical density,

opacity) is small
−→ large rapidity gap survival probability

(due to small density, only few scatters)
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Aside: continued pdf’s
I sea (anti)quarks: scale down to vanish as Q2 → 0
I valence quarks: transform to pure valence contribution

as Q2 → 0
I same shape as valence quarks as Q2 → 0, scale to

satisfy momentum sum rule
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