Workshop on Hadron-Hadron & Cosmic-Ray Interactions at multi-TeV Energies ECT* - Trento, Nov 29th - Dec 3rd, 2010

> Preliminary results on neutral particles in the forward region at LHC with the LHCf experiment

> > Massimo Bongi - INFN (Florence, Italy) LHCf Collaboration

Hadron-Hadron & Cosmic-Ray Interactions at multi-TeV Energies

Recent excellent observations (e.g. PAO, HiRes, TA) but the origin and composition of UHECR is still unclear

Uncertainty in hadron-hadron interactions affects:

- the prediction of X_{max}
- SD observations

Study of <u>very forward</u> particle emission at as high as possible energy is indispensable

CR <=> LHC connection

- The dominant contribution to the energy flux in the atmospheric shower development comes from the very forward produced particles
- Precise measurement of $\gamma,\ \pi^0$ and n spectra in the very forward region at LHC
- **7** TeV + 7 TeV in the CM frame $\rightarrow ~10^{17} \text{ eV}$ in "fixed target" frame

The LHCf Collaboration

K.Fukatsu, Y.Itow, K.Kawade, T.Mase, K.Masuda, Y.Matsubara, G.Mitsuka, K.Noda, T.Sako, K.Suzuki, K.Taki

Solar-Terrestrial Environment Laboratory, Nagoya University, Japan K.Yoshida K.Kasahara, M.Nakai, Y.Shimizu, T.Suzuki, S.Torii

Waseda University, Japan Kanagawa University, Japan <u>Ko</u>nan University, Japan

Ecole Polytechnique, France

LBNL, Berkeley, USA

O.Adriani, L.Bonechi, M.Bongi, R.D'Alessandro, M.Grandi, H.Menjo, P.Papini, S.Ricciarini, G.Castellini

T.Tamura

Y.Muraki

M. Haguenauer

W.C.Turner

A.Tricomi

J.Velasco, A.Faus

D.Macina, A-L.Perrot

INFN and Universita' di Firenze, Italy INFN and Universita' di Catania, Italy

IFIC, Centro Mixto CSIC-UVEG, Spain

CERN, Switzerland

Experimental set-up

Particle and energy flow vs pseudorapidity

<u>Low multiplicity</u>

<u>High energy flux</u>

Arm1 detector

Sampling E.M. calorimeters:

each detector has two calorimeter towers, which allow to <u>reconstruct π^0 </u>

• Front counters:

thin plastic scintillators, 80x80 mm²

- monitor beam condition
- rejection of background due to beam residual gas collisions by coincidence analysis

Absorber: 22 tungsten

layers, 44 X_0 , 1.7 λ

<u>Scintillating Fibers + MAPMT</u>: 4 pairs of layers (at 6, 10, 30, 42 X₀), tracking measurements (resolution < 200 μm)

<u>Plastic Scintillator</u>: 16 layers, 3 mm thick, trigger and energy profile measurement

Arm2 detector

• <u>Sampling E.M. calorimeters</u>:

each detector has two calorimeter towers, which allow to reconstruct π^0

• Front counters:

thin plastic scintillators, 80x80 mm²

- monitor beam condition
- rejection of background due to beam residual gas collisions by coincidence analysis

Absorber: 22 tungsten

layers, 44 X_0 , 1.7 λ

<u>Silicon Microstrip</u>: 4 pairs of layers (at 6, 12, 30, 42 X₀), tracking measurements (resolution ~ 40 μm)

<u>Plastic Scintillator</u>: 16 layers, 3 mm thick, trigger and energy profile measurement

ATLAS & LHCF

Expected results @ 14 TeV collisions

Summary of operations in 2009 and 2010

With Stable Beam at 900 GeV

- Total of 42 hours for physics
- ~ 10⁵ showers events in Arm1+Arm2

<u>With Stable Beam at 7 TeV</u>

Total of 150 hours for physics with different setups

- Different vertical position to increase the accessible kinematical range
- Runs with or without beam crossing angle
- ▶ ~ $4 \cdot 10^8$ shower events in Arm1+Arm2
- ▶ ~ 10⁶ π^0 events in Arm1+Arm2

<u>Status</u>

LHC

- Completed program for 900 GeV and 7 TeV
 - Removed detectors from tunnel in July 2010
 - Post-calibration beam test in October 2010
- Upgrade to more rad-hard detectors to operate at 14 TeV in 2013

TeV γ rays not from Crab but... ...underground!

Particle identification

Typical transition curve for γ rays

Typical transition curve for hadrons

of the shower energy

PID study is still ongoing (use of neural

networks is under investigation)

L90% @ 40 mm cal. of Arm1 Definition of L90%

Energy spectra at 900 GeV

gamma-ray like

shown

Response for hadrons and systematic errors are under study.

Energy spectra at 7 TeV

Neutral pions

Massimo Bongi - CRLHC Workshop - 29th November 2010 - ECT* Trento

LHC

2γ invariant mass spectrum @ 7 TeV

- The search for η particles is an important tool for discriminating hadronic interaction models, because their spectra differ from model to model
- Important tool also for energy scale calibration

LHC

14 TeV in 2013: not only the highest energy, but energy dependence too!

Schedule and future plan

2010, Oct	Beam test at SPS to confirm the radiation damage and the performance
end of 2010	Finalize analysis at 900 GeV (almost completed) and at 7 TeV
2011 - 2012	Upgrade the detector for radiation hardness: replacement of scintillators and SciFi with GSO
2013	Re-installation of detectors in the tunnel for operation at 14 TeV

Then we are thinking about: - Operation at LHC <u>light</u> ion collisions (not Pb-Pb).

Conclusions

- LHCf is a forward experiment at LHC; its aim is to measure energy spectra and transverse momentum distributions of very energetic neutral secondaries from p-p interactions in the very forward region of IP1 (at $\eta > 8.4$)
- Results will help calibrating the hadronic interaction models; one important field where this measurements are mostly important is the study of atmospheric showers induced by HECR
- LHCf <u>successfully completed operations</u> at 900 GeV and at 7 TeV; the detectors have been removed from the LHC tunnel on 21st July 2010
- Analysis of data at 900 GeV is almost completed; we will finalize analysis at 7 TeV before the end of this year

 Detectors will be <u>upgraded in 2011-2012</u> for radiation hardness and will be re-installed for data taking at 7 TeV + 7 TeV in 2013

Open Issues on UHECR spectrum

LHCT

IP1,ATLAS

Armi

LHCf single γ geometrical acceptance

Mechanical manipulators allows to remotely move LHCf: some runs with the detectors vertically shifted few cm allow to cover the whole kinematical range

Front counters

 Thin scintillators with 8x8cm² acceptance, which have been installed in front of each main detector.

Beam-gas backgroud @ 900 GeV

2009

2010

Very big reduction in the Beam Gas contribution!!! Beam gas ~ I, while interactions ~ I²

Comparison of Arm1 and Arm2 @ 7 TeV

Gamma-like, Small tower

Gamma-like, Large tower

Red : Arm1 **Blue** : Arm2 Same runs, same conditions, common rapidity region selected. Spectra corrected for the live time of detectors.

Selection of rapidity region (comparison Arm1/2)

R1=5mm R2-1 = 35mm R2-2 = 42mm theta = 20°

Both Arm1 and Arm2 cover the same rapidity area in small and large tower. Here the beam center is determined by our measurements.

LHCf energy resolution

Energy resolution < 5% at high energy, even for the smallest tower

Arm1 position resolution

Arm2 position resolution

200 GeV electrons

LHC

Leakage Correction

(Arm1 prototype)

Radiation damage studies

test of Scintillating fibers and scintillators

Massimo Bongi - CRLHC Workshop - 29th November 20

Dose evaluation on the basis
of LHC reports on radiation
environment at IP1

~ 100 Gy/day @ 10³⁰ cm⁻²s⁻¹
luminosity are expected

 ~ 10 kGy during few months operation lead to ~ 50% light output decrease

continuous laser calibration
to monitor scintillators and
correct for the decrease of
light output

Accumulated Events in 2010

10⁸ events!

LHCf removal

LHCf Arm1 - installation

LHCf Arm2 - installation

LHCf data taking

