Tevatron QCD for Cosmic-Rays

Lars Sonnenschein

on behalf of the DØ and CDF collaborations

Hadron-Hadron & Cosmic-Ray Interactions at multi-TeV Energies, Trento, 29.11 - 03.12 2010

SPONSORED BY THE

Federal Ministr of Education and Research

Tevatron QCD for Cosmic-Rays

Outline

Introduction:

- Tevatron accelerator
- \circ DØ, CDF experiments
- \circ Tevatron kinematics/reach (wrt. cosmic rays)
- Diffractive and Exclusive production:
 - \circ Elastic $p\bar{p}$ scattering (DØ)
 - \circ Exclusive Z boson production (CDF)
 - \circ Diffractive W/Z boson production (CDF)
 - \circ Exclusive diffractive dijet production (high $\textit{m}_{jj})$ (DØ)
 - \circ Exclusive dijet production (CDF)
 - \circ Diffractive dijet production (CDF)
 - \circ Exclusive Charmonium production (CDF)
 - \circ Exclusive $\gamma\gamma$ production (CDF)
 - \circ Exclusive e^+e^- production (CDF)

- Underlying event, DPS, MinBias:
 - \circ MinBias $\Delta \phi$ (DØ)
 - MinBias Hyperons (CDF)
 - Double Parton Scattering (DØ)
 - \circ UE in Drell-Yan production (CDF)
 - Thrust (CDF)
 - \circ Jet particle $k_{\mathcal{T}}$ distributions (CDF)

Conclusions

Tevatron QCD for Cosmic-Rays

Introduction

Fermilab Tevatron Run II

- Run II started in March 2001
- Peak Luminosity: $4 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- Delivered: > 9.7 fb⁻¹ (Run I: 0.16 fb⁻¹)
- ▶ 12 fb⁻¹ expected by end of FY 2011

Collider Run II Integrated Luminosity

Thanks to all colleagues at the Tevatron for their contributions to this talk

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

Tevatron QCD for Cosmic-Rays

The DØ and CDF detectors

• Data taking efficiency (DØ & CDF) \simeq 90%

Cosmic ray and collider/Tevatron energies

Kinematic plane: Q^2 vs. x

- Tevatron jet measurements cover a wide kinematic range
- Covers phase space regions beyond HERA (*ep* collisions) and fixed targets and has also overlap with HERA measurements
- ► DØ forward jets (|η_{max}| = 3) extends phase space to lower x considerably

RINTHAACH

The bigger picture

- LHC coverage included
 Q = M
 x = (M/14TeV) exp(±y)
- Wide range of rapidities and scales accessible
- Auger kinematic limit 100TeV c.m.s.
- Cosmic rays: Large region with small x (forward proton, diffractive physics) and large region with low scale (underlying event)

Diffractive jet production at the Tevatron

- ▶ Data fully corrected for instrumental effects (acceptance, efficiency corrections)
 ⇒ can be directly used for testing and improving existing event generators and any future calculations/models
- pQCD predictions are compared taking non-perturbative effects (hadronisation, UE) from simulation into account in the prediction
- Data and theory are compared at the particle level (hadronic final state)

• Diffractive and Exclusive production

Differential cross section $d\sigma/d|t|$ in elastic $p\bar{p}$ scattering

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

timming

Tevatron QCD for Cosmic-Rays

|t| (Gev²

Differential cross section $d\sigma/d|t|$ in elastic $p\bar{p}$ scattering

$$\frac{d\sigma}{d|t|} = \frac{1}{\mathcal{L} \times A \times \epsilon} \frac{dN}{d|t|}, \quad \text{fit} \sim C \exp(-b|t|)$$

- ▶ $b = 16.54 \pm 0.10(\text{stat}) \pm 0.80(\text{syst}) \text{ GeV}^{-2}$
- First Tevatron measurement of first diffraction minimum of el. xsec. $d\sigma/d|t|$
- Position of first diffraction minimum moves to lower |t| with higher energies

······ Cexp(-bltl)

1.2

do/d|t| (mb/GeV²

10

10⁻²

10 0.2

DØ Run II Preliminary, L= 30 nb⁻¹

0.8

0.6

0.4

CDF Collab., Phys. Rev. Lett. 102, 222002 (2009)

$$\mathcal{L}=2-2.2~\text{fb}^{-1}$$

Exclusive dilepton production

Exclusive Z boson production

 $\ell^+\ell^-$ pairs:

- ► *M*_{ℓℓ} > 40 GeV
- ▶ $p_T^\ell > 25 \text{ GeV}$
- Z subsample:
 - ▶ 82 < $M_{\ell\ell}$ < 98 GeV
 - ▶ $p_T^\ell > 25 \text{ GeV}$

- \bullet Miniplugs (lead-liquid scintillator calorimeters) 3.6 $<|\eta|<$ 5.2
- Beam Shower counters (scintillation counters) $5.4 < |\eta| < 7.4$

< ∰ > < ≣ >

- Gas Čerenkov light counters (luminosity) 3.7 $<|\eta|<$ 4.7
- Tracking in Forward Proton Spectrometer
- (Roman Pot) $0.03 \lesssim \xi(ar{p}) \lesssim 0.08$

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

Tevatron QCD for Cosmic-Rays

Diffractive W and Z boson production

 $\mathcal{L} = 0.6 \text{ fb}^{-1}$

CDF Collab., accepted by PRD (2010), arXiv:1007.5048

- ► Measure fraction of diffractive *W*, *Z* boson events to determine diffr. structure function
- ► Momentum fraction 0.03 < ξ < 0.10 (of diffractive exchange), Momentum transfer (squared) |t| < 1 GeV²
- ► ξ determined from calorimeter energy deposits: $\xi^{calo} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{\eta}$
- ► In diff. *W* production determine ν kinematics from Roman Pot (RP) track: $\xi^{RP} - \xi^{calo} = \frac{\frac{\mu}{2} T}{2} e^{\eta_{\nu}}$

Kinematic selection

- central electron with E_T > 25 GeV or muon with p_T > 25 GeV
- Event z-vertex within 60 cm of nominal IP
- W boson:
 - $\circ \not \!\! E_T > 25~{
 m GeV}$
 - \circ W transverse mass in range 40 120 GeV
- Z boson:
 - \circ 2. electron (central or plug) with $E_T > 25~{\rm GeV}$ or muon with $p_T > 25~{\rm GeV}$
 - \circ Reconstructed Z mass in range 66 116 GeV

Diffractive W and Z boson production

 $R_Z(SD/ND) = 0.85 \pm 0.20(\text{stat}) \pm 0.11(\text{syst})$

(for considered phase space: $0.03 < \xi < 0.10$ and |t| < 1 GeV²)

RNIHAACHEN

▲ 글 ▶ ▲ 글

High mass exclusive diffractive dijet production

DØ Collab., prelim. (2010), DØ Note 6042-Conf, FERMILAB-PUB-10-361-E $L = [5 - 100] \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$

 \Rightarrow other $p\bar{p}$ interactions <20%

High mass exclusive diffractive dijet production

- Leading systematics:
 - calorimeter cells calibration
 - JES
- Events with protons dissociating into low-mass states escaping detection < 10%
- ▶ Probability of background fluctuation ($p = 2 \cdot 10^{-5}$) corresponds to 4.1σ

Observation of exclusive dijet production

CDF Collab., Phys. Rev. D 77, 052004 (2008),

hep-ex/0712.0604

 $\mathcal{L} = 310 \text{ pb}^{-1}$

 $E_T^{
m jet~1,2} > 10~{
m GeV}$ $R_{jj} \equiv M_{jj}/M_{x} > 0.8$

Calculation by Khoze, Martin and Ryskin consistent within its factor of 3 uncertainty Eur. Phys. J. C **14**, 525 (2000)

- Crucial to calibrate theoretical models
- Double pomeron exchange
 - \rightarrow possibility to study excl. Higgs production (@LHC)
 - \rightarrow predictions did vary by factor 1000 before this CDF measurement

Diffractive dijet production

CDF Collab., prelim. (2006), http://www-cdf.fnal.gov/physics/new/qcd/QCD.html

- Trigger: high E_T jet + recoil anti-proton in Roman Pot Spectrometer (RPS)
- ▶ Recoil anti-proton momentum loss $0.03 < \xi < 0.1$, Momentum transfer $|t| < 0.1 \text{ GeV}^2$
- Ratio SD/ND @ $10^{-3} < x_{Bj} < 10^{-1}$, $10^2 < Q^2 < 100^2 \text{ GeV}^2$

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

 $\mathcal{L} = 128 \text{ pb}^{-1}$

Diffractive dijet production

Kinematic distributions for SD dijet events

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

Tevatron QCD for Cosmic-Rays

Diffractive dijet production

Ratio SD/ND: small Q^2 dependence

Diffr. |t|-distribution shape: No observed Q^2 dependence

Consistent with Run I and composite Pomeron exchange

Exclusive Charmonium and $\gamma\gamma \rightarrow \mu^+\mu^-$ production

CDF Collab., Phys. Rev. Lett. 102, 242001 (2009), arXiv:0902.1271 $\mathcal{L} \simeq 1.5 \text{ fb}^{-1}$

- 2 oppositely charged μ tracks
- $p_T(\mu) > 1.4$ GeV, $|\eta| < 0.6$
- No other particles in event
- ► ToF veto, $\Delta \theta_{3D} < 3.0$ rad, 3 < $M_{\mu\mu} < 4$ GeV (cosmics)
- $\epsilon_{\text{excl}} = 0.093$ (No other inel. scat.)

•
$$\mathcal{L}_{\mathsf{eff}} = \epsilon_{\mathsf{excl}} imes \mathcal{L} = 139 \pm 8 \ \mathsf{pb}^{-1}$$

Exclusive Charmonium and $\gamma\gamma \rightarrow \mu^+\mu^-$ production

10 MeV/c

60

50

Backgrounds

- Proton fragmentation without products in forward detectors
- For J/ψ , χ_c additional γ with EM shower < 80 MeV
- Events with other particle(s) not detected

Cross sections

 $\sigma(|\eta_{\mu}| < 0.6, \ 3 < M_{\mu\mu} < 4 \text{ GeV}) = 2.7 \pm 0.3(\text{stat}) \pm 0.4(\text{syst}) \text{ pb}$ In agreement with QED prediction: $\sigma = 2.18 \pm 0.01$ pb

- Cross sections $\frac{d\sigma}{dy}\Big|_{y=0}$: • for J/ψ : 3.92 ± 0.25(stat) ± 0.52(syst) nb
 - for $\psi(2S)$: 0.53 \pm 0.09(stat) \pm 0.10(syst) nb
 - for χ_{c0} : 76 ± 10(stat) ± 10(syst) nb

▶ Odderon (3g, C = -1) limit $O\mathbb{P} \rightarrow J/\psi$: $d\sigma/dy|_{y=0} < 2.3$ nb

Search for exclusive $\gamma\gamma$ production

CDF Collaboration, Phys. Rev. Lett. 99, 242002 (2007)

Signal process: $p\bar{p}
ightarrow p\gamma\gamma\bar{p}$ with $gg
ightarrow\gamma\gamma$

Contributions from

- $q\bar{q} \rightarrow \gamma\gamma$ (< 5%)
- $\gamma\gamma \rightarrow \gamma\gamma$ (< 1%)

Dominant backgrounds (< 25%)

• $\pi^0 \pi^0$ production $(\pi^0 \rightarrow 2\gamma)$

• $\eta\eta$ production ($\eta \rightarrow 2\gamma$)

- For EM showers $E_{\mathcal{T}} > 5$ GeV, $|\eta| < 1$
- Ratio HAD/EM < 0.058</p>
- ▶ No tracks or two adjacent tracks $(\gamma \rightarrow e^+e^-)$
- \blacktriangleright No additional particles in $|\eta| < 7.4$
- ► $p(\bar{p})$ energy deposit in BSC negligible for $p_T < 1.2 \text{ GeV}$

 $\mathcal{L}\simeq 530~{
m pb}^{-1}$

Search for exclusive $\gamma\gamma$ production

Prediction: 36^{+72}_{-24} fb

Backgrounds

- Cosmic rays
- Misidentified excl. e⁺e⁻ events
- Non-excl. evts. with missed particles
- Quasi-excl. (1 or 2 protons dissociation missed (< 0.1%))
- ▶ Excl. $\pi^0 \pi^0$, $\eta \eta$ production

Exclusive e^+e^- production

CDF Collaboration, Phys. Rev. Lett. 98, 112001 (2007)

Signal process: $p\bar{p} \rightarrow p e^+ e^- \bar{p}$ with $\gamma \gamma \rightarrow e^+ e^-$

Signal event candidate:

 Inv. mass of Central system additionally calculable by excl. processes

- Improving uncertainties on luminosity measurements
- Selection criteria:
 - 2 e candidates
 - $E_T>5$ GeV, $|\eta|<2$
 - Matching track
 p_T > 1 GeV
 - Calorimeter timing (cosmics) \(\epsilon_{cosmic} = 0.93\)
 - ▶ e_{excl} = 0.086
 - ▶ ε_{FSR} = 0.79

 $\mathcal{L}\simeq 530~{
m pb}^{-1}$

Exclusive e^+e^- production

$Z \rightarrow ee$ background estimated by fit

$= \frac{N_{dat} - N_{bkg}}{\epsilon_{cosmic} \cdot \epsilon_{FSR} \cdot \epsilon_{ee} \cdot \epsilon_{excl} \cdot \mathcal{L}}$

- $\sigma(\text{excl.}) = 1.6^{+0.5}_{-0.3}(\text{stat}) \pm 0.3(\text{syst}) \text{ pb}$ In agreement with LPAIR MC prediction: $\sigma = 1.71 \pm 0.1$ pb
- $\sigma(\text{incl.}) = 1.8^{+0.5}_{-0.2}(\text{stat}) \pm 0.3(\text{syst}) \text{ pb}$ In agreement with LPAIR MC prediction: $\sigma = 1.9 \pm 0.4$ pb

Data (no BG subtracted)

PAIR MC

Underlying event, Double Parton Scattering MinBias

MinBias charged particle multiplicity/interactions at Tevatron

- PYTHIA 6.423, generator particle level with different tunes
- Plots from P. Skands

(http://home.fnal.gov/~skands/leshouches-plots)

MinBias charged particle multiplicities at Tevatron

- PYTHIA 6.423, generator particle level with different tunes
- Plots from P. Skands

(http://home.fnal.gov/~skands/leshouches-plots)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Tevat

Drell-Yan transverse momentum and interactions at Tevatron

- PYTHIA 6.423, generator particle level with different tunes
- Plots from P. Skands
 - (http://home.fnal.gov/~skands/leshouches-plots)

RWITHAACHEN

回とくほとくほ

ϕ and η correlations in minimum bias events

DØ Collab., prelim. (2010), DØ Note 6054-Conf

Data ∈ [2002, 2006]

- $\Delta \phi$ between leading p_T track and other tracks
- ► One collision (PV) fires dimuon trigger (p_T(μ's) > 2 GeV), others count as Min Bias PV (p^{track} > 0.5 GeV, |η| < 2, Δz(VTX) < 20 cm)</p>
- N_{\min}^{track} subtracted (fake tracks, wrong assigned tracks flat in $\Delta \phi$)
- Normalised shape to unit area (after subtraction)

ϕ and η correlations in minimum bias events

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

- ► N^{track}(same side) N^{track}(opposite side) wrt. leading p_T track
- Observables chosen for minimal systematic uncertainties (fake rates, efficiencies)
 ideal candidates for Tuning

Hyperon production in minimum bias events

Data ∈ [2002, 2008]

- CDF Collab., prelim. (2010), CDF Note CDF/PUB/QCD/PUBLIC/10084
- ► $\Lambda^0, \bar{\Lambda}^0 \to p\pi^-$
- Cascade decays:

$$\begin{array}{l} \Xi^- \to \Lambda \pi^- \to (p\pi^-)\pi^- \\ \Lambda^0 K^-, (\Xi^0 \pi^-, \Xi^- \pi^0) \to p\pi^- K^- \end{array}$$

- Assigning p mass to high p_T track
- Reconstructing invariant Λ (Ξ, Ω) mass

 $\boldsymbol{\Lambda}$ reconstruction:

- Two oppositely charged tracks, $p_T > 0.325 \text{ GeV}, |\eta| < 1$
- Secondary vertex $(\Delta Z_{1,2} < 1.5 \text{ cm}, L_{\Lambda} > 2.5 \text{ cm})$

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

Hyperon production in minimum bias events

- Inclusive invariant p_T distribution for Λ , Ξ and Ω
- Acceptance corrected

 $E d^{3} \sigma / dp^{3} (mb/GeV^{2}c^{3})$

10

10-

10-5

10-6

|n| < 1

N_ <10 Nch >24

- Fit to functional form $(A)(p_0)^n/(p_T + p_0)^n$ (power law)
- Two different track multiplicity regions: $N_{\rm ch} < 10$, $N_{\rm ch} > 24$
- Lower slope for lower multiplicity
- Production ratios constant over p_T

CDF Run II Preliminary

Neb : Tracks with In I<1 and $p_T > 0.3 \text{ GeV/c}$

Double parton scattering in γ + 3 jet events

DØ Collab., PRD 81, 052012 (2010)

 $\mathcal{L}=1.0~{
m fb}^{-1}$

- Complementary information about proton structure: Spatial distribution of partons
 - \Rightarrow Possible parton-parton correlations. Impact on PDF's?
- Background in signal events (important for rare processes)

Double parton scattering in $\gamma + 3$ jet events

0.5

- Measurements in three bins of 2^{nd} jet p_T : 15-20, 20-25 and 25-30 GeV
- Using data driven techniques (diff. p_T spectra)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

2.5

Double parton scattering in $\gamma+{\rm 3~jet}$ events

- DP fractions drop from 0.47 ($15 < p_T^{2nd jet} < 20$) to 0.23 ($25 < p_T^{2nd jet} < 30$)
- Average over three p_T bins: $<\sigma_{eff}>=16.4\pm0.3({
 m stat})\pm2.3({
 m syst})$ mb
- \bullet Good agreement with previous CDF measurements in 4 jet and γ + 3 jet events

Spatial parton density models			
Model	$\rho(r)$	$\sigma_{\rm eff}$	R _{rms} (fm)
Solid sphere	const., $r < r_p$	$4\pi r_p^2/2.2$	0.41 ± 0.05
Gaussian	$e^{-r^2/2a^2}$	$8\pi a^2$	0.44 ± 0.05
Exponential	$e^{-r/b}$	$28\pi b^2$	0.47 ± 0.06

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

Tevatron QCD for Cosmic-Rays

Underlying Event in Drell-Yan production

- Toward and transverse regions (excluding leptons) very sensitive to UE
- Pythia model with Tune AW parameter settings is able to describe data quite well. Though not perfect.

Underlying Event in Drell-Yan production

- Pythia model with Tune AW parameter settings is able to describe data quite well.
- Though not perfect.
- HERWIG + JIMMY (not shown) produces softer $< p_T >$ spectrum

 Drell-Yan underlying event behaves similar compared to high p_T leading jet events

Event shapes: Thrust and Minor Thrust

CDF Collab., prelim. (2010), http://www-cdf.fnal.gov/physics/new/qcd/QCD.html $\mathcal{L} = 2.0 \text{ fb}^{-1}$

• Geometric properties of QCD final state energy flow (E [1st jet] > 200 GeV, $|\eta_{\text{iets}}| < 0.7$)

윙겆

Understanding dynamics of soft perturbative QCD

pencil vs. spheric like events 이 여명 Leading Jet E. ≥ 200 GeV ILO+NLL (CTEO6M) Pythia Parton (CTEO5L) 10 Pythia Hadron 10⁻¹ 10 0.35 $X = \tau$

Thrust: $1 - \tau \equiv 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|}$

Lars Sonnenschein, RWTH Aachen, III, Phys. Inst. A

Thrust major: $T_M \equiv \max_{\vec{n} \cdot \vec{n_T}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum_i |\vec{p_i}|}$

Thrust minor: $T_{\min} \equiv \frac{\sum_{i} |p_{\perp,i}|}{\sum_{i} |\vec{p_i}|}$ measures radiation out of τ , T_M plane

Event shapes: Thrust and Minor Thrust

Underlying event alters over-all shape

• Reconstruct linear combination observable $O(\langle \tau \rangle, \langle T_{\min} \rangle)$ $= \gamma_{MC}(\alpha \langle T_{\min} \rangle -\beta \langle \tau \rangle)$ with $\alpha = 1 - 2/\pi$, $\beta = 2/\pi$, $\gamma_{MC} =$ MC based normalisation factor \Rightarrow Independant of UE

k_T distributions of particles in jets

 $\mathcal{L}\simeq 775~{
m pb}^{-1}$

CDF Collaboration, Phys. Rev. Lett. 102, 232002 (2009)

- Test pQCD to soft process of jet fragmentation
- Probing boundary between parton shower and hadronisation
- Checking Local Parton Hadron Duality (LPHD)
- Measure k_T of particles in cone R = 0.5 in jet (R=1.0)
- ▶ Jets balanced in E_T , $E_{T,\min}^{\text{trig}} = 5 \text{ GeV}$
- \leq 2 extra jets $E_T^{\text{extra}} < 5.5 \text{ GeV} + 0.065(E_T^1 + E_T^2)$

k_T distributions of particles in jets

- ► Three Q (and corresponding dijet mass) bins: Q = 27 GeV, 95 < M_{ii} < 132 GeV</p>
 - $Q = 68 \text{ GeV}, 243 < M_{ii} < 323 \text{ GeV}$
 - $Q = 119 \,\, {
 m GeV}, \, 428 < M_{jj} < 563 \,\, {
 m GeV}$
- MLLA and NMLLA resummations describe data well in their region of validity
- ► Hadronisation effects are small ⇒ further support for LPHD

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

Q=E ... 0_=136*0.5=68 GeV

°.0 o

MLLA

(b)

10

10-2

10⁻³ T.

10

10-2

Tevatron QCD for Cosmic-Rays

Conclusions

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Tevatron QCD for Cosmic-Rays

Conclusions

- Tevatron provides unique $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV with zero crossing angle ($\sqrt{s} = 1.8$ TeV in Run I)
- Predictions agree in general with measurements
- Diffractive and Underlying Event

 studies were in many cases pioneering
 Methods established, widely used by LHC experiments today
 Provided very important input to theorists, in particular for non-pQCD physics (theoretical models varying by quite a lot)
- In Run I ($\sqrt{s} = 1.8$ TeV) Tevatron/CDF provided already useful input for diffractive PDF's

(breakdown of factorisation between HERA and Tevatron)

• Backup slides

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Tevatron QCD for Cosmic-Rays

Diffractive Structure Function

$$\sqrt{s} = 1.8$$
 TeV

RWITHAACHEN

- Factorisation breakdown between HERA and Tevatron
- Production rate for Tevatron should be \sim 8 times higher

 β -momentum fraction of parton in pomeron