## Results, Status and Perspectives for 2010/11



## Karsten Eggert on behalf of the TOTEM Collaboration

Workshop on Hadron - Hadron \& Cosmic-Ray Interactions at multi-TeV Energies
ECT* - Trento, Nov 29th - Dec $3^{\text {rd }}, 2010$

## TOTEM Physics Overview



Diffraction: soft and hard



## Forward physics



## Experimental Setup @ IP5



Roman Pots: measure elastic \& diffractive protons close to outgoing beam


## All T1 Modules Ready in the Test Beam Zone



## T1 telescope performance

Both arms successfully tested with pion and muon beams
Pions on copper target to get many-tracks events


Longitudinal vertex



Transverse vertex


## T2 Telescope

TOTEM


## Installation of half T2 Telescope



Half a telescope assembled in lab

|  |
| :---: |
|  |  |
|  | installed as pairs with

a
configuration.



Installation

## The Roman Pot System

Sector 45 (220m)


Sector 56 (220m)


## Roman Pot System

Roman Pot detector assembly



All 12 Roman Pots at $\pm 220 \mathrm{~m}$ from IP5 are operational: delivering data with active triggers.
RP147 detector assemblies to be installed in winter technical stop.
Until June: data were taken with RP220 in retracted position.


## 'Edgeless' detectors to minimize d

Each RP station has 2 units, 5 m apart.
Each unit has 2 vertical insertions ('pots') and 1 horizontal



Inelastic Acceptance in $\eta$ :
non-diffractive minimum bias events:

single-diffractive events:


Proton Acceptance in $(\mathrm{t}, \xi): \quad(\xi=\Delta \mathrm{p} / \mathrm{p})$ (contour lines at $A=10 \%$ )


All TOTEM detectors have trigger capability.

## Overview 2010

| 30.03. | first T2 run: tracks seen |  |  |
| :---: | :---: | :---: | :---: |
| April | T2 commissioning with beam, RP comm. in garage position, bunch-crossing trigger |  |  |
| 21.04. | first tracks in RPs in garage position, active trigger |  |  |
| 15.05. | first T2 data with squeezed optics | $\begin{aligned} & \beta^{*}=2 \mathrm{~m} \\ & 2 \mathrm{~b} ., \quad 2 \mathrm{e} 10 \mathrm{p} / \mathrm{b} \end{aligned}$ |  |
| 25.06. | RP beam-based alignment | $\begin{aligned} & 450 \mathrm{GeV}, \beta^{*}=11 \mathrm{~m} \\ & 1 \mathrm{~b} ., 3 \mathrm{e} 10 \mathrm{p} / \mathrm{b} \\ & \text { later } 9 \mathrm{e} 10 \mathrm{p} / \mathrm{b} \end{aligned}$ |  |
| 04.07. | first T2 data with nominal bunches | $\begin{aligned} & \beta^{*}=3.5 \mathrm{~m} \\ & 1 \mathrm{e} 11 \mathrm{p} / \mathrm{b} \text { (nom.) } \end{aligned}$ |  |
| $\begin{aligned} & 13 .-14 . \\ & 07 . \end{aligned}$ | RP insertion to $30 \sigma$ in stable beams | 8 nom. b. |  |
| $\begin{aligned} & \text { 15.07.- } \\ & \text { 04.08. } \end{aligned}$ | RP insertion to $25 \sigma(\mathrm{~V})$ and $30 \sigma(\mathrm{H})$ in stable beams | 8-16 nom. b. | $\begin{aligned} & 1.5 \mathrm{nb}^{-1} \\ & \rightarrow \text { first } 2 \text { elastic } \\ & \text { candidates } \end{aligned}$ |
| 09.08. | partial RP beam-based alignment | $3.5 \mathrm{TeV}, 1$ nom. b . |  |
| 11.08. | RP loss map measurement to qualify $20 \sigma$ settings |  |  |
| 18.08. | first RP insertion to $20 \sigma(\mathrm{~V})$ and $25 \sigma$ (H) | 16 nom. b. |  |

## Overview 2010 (continued)

| 24.-26. <br> 08. | RP insertions to $20 \sigma(\mathrm{~V})$ and $25 \sigma(\mathrm{H})$ | 16 nom. b. | $184.6 \mathrm{nb}^{-1}$ |
| :--- | :--- | :--- | :--- |
| 21.09. | RP beam-based alignment and run at $7 \sigma$ | 1 nom. b. | $0.88 \mathrm{nb}^{-1}$ |
| 28.09. - <br> 28.10. | RP insertions to $18 \sigma(\mathrm{~V})$ and $20 \sigma(\mathrm{H})$ | $93-348$ nom. b. | $3867.1 \mathrm{nb}^{-1}$ |
| 30.10. | Special run: <br> RPs inserted to $7 \sigma(\mathrm{~V})$ and $16 \sigma(\mathrm{H})$ <br> pileup-free data for T2 (trigger on pilot) <br> common run RP + T2 | 1 pilot b. $(1 \mathrm{e} 10)+$ <br> $4 \mathrm{~b} . \mathrm{x} 7 \mathrm{e} 10 \mathrm{p} / \mathrm{b}$. | $8.6 \mathrm{nb}^{-1}$ |

Total:

| $25 \sigma$ | $1.5 \mathrm{nb}^{-1}$ |
| :--- | :---: |
| $20 \sigma$ | $185 \mathrm{nb}^{-1}$ |
| $18 \sigma$ | $3867 \mathrm{nb}^{-1}$ |
| $7 \sigma$ | $9.5 \mathrm{nb}^{-1}$ |



TOTEM



## Preliminary studies with Pythia + full Geant detector simulation

Track $\mathrm{dN}_{\mathrm{cH}} / \mathbf{d} \eta$ (Statistical error only)


## Work in progress on:

- Understanding secondary contribution and smearing effects
- Proper tuning of detector performance simulation
- Optimization of trk algorithm and selection cuts for improved rejection of secondary charged tracks,
- Estimation of systematic


Luncertainties

## Track $\mathbf{d N}_{\mathbf{C H}} / \mathbf{d} \eta$ (Statistical error only)



Track $\mathbf{d N}_{\mathbf{c H}} / \mathbf{d} \eta$ (Statistical error only)


400K inelastic events from dedicated run with low proton density bunches.

- No smearing corrections
"Raw" distribution:
- No efficiency corrections
- No secondaries contribution subtraction


## Work ongoing on unfolding corrections

## Collimation-Based Roman Pot Alignment w.r.t. the Beam Centre

Alignment is the central problem of Roman Pot measurements

LHC collimation system produces sharp beam edges
$\rightarrow$ used to align Roman Pots and to determine the centre of the beam (same procedure as collimator setup)

Collimator cuts a sharp beam edge symmetrically to the centre
second RP approaches


When both top and bottom pots "feel" the edge:

- they are at the same number of sigmas from the beam centre as the collimator
- the beam centre is exactly in the middle between top and bottom pot


## Measurement of Forward Diffractive and Elastic Protons: the principle

Hit distribution @ RP220



Detect the proton via:
its momentum loss (low $\Omega$ )
its transverse momentum (high $\Omega_{\text {) }}$ )
Detector requirements:
To approach the beam as close as possible: almost edgeless detectors
Reliable movement system with solid mechanical stability for reproducible alignment high resolution of typically $20 \mu \mathrm{~m}$
Trigger capability with large flexibility

## LHC Optics

$$
\begin{aligned}
& x(s)=L_{x}(s, \xi) \theta_{x}^{*}+v_{x}(s, \xi) x^{*}+D_{x}(s, \xi) \xi \\
& y(s)=L_{y}(s, \xi) \theta_{y}^{*}+v_{y}(s, \xi) y^{*}+D_{y}(s, \xi) \xi
\end{aligned}
$$

$$
\xi=\frac{\Delta p}{p}
$$



Large Chromaticity effects

## Physics with RP detectors

Elastic scattering, $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}, \beta^{*}=2 \mathrm{~m}$

Elastically scattered proton flux


Vertical RPs contain all events
$\sigma(|t|)=0.1-0.5 \mathrm{GeV}^{2}(\propto \sqrt{ }|t|)$


PPP3, 3 pomeron model: $\sigma_{\text {acc }} \approx 4 \mu \mathrm{~b}$
$\sigma_{\text {el }} \sim 20$ mbarn

## Track map (side 4,5) for left right coincidences




## Collinearity in $\theta_{y}$

Low $\xi$, i.e. $|\mathrm{x}|<0.4 \mathrm{~mm}$ and $2 \sigma$ cut in $\Delta \theta_{\mathrm{x}}{ }^{*}$



Compatible with the beam divergence

## Collinearity in $\theta_{x}$

Low $\xi$, i.e. $|\mathrm{x}|<0.4 \mathrm{~mm}$ and $2 \sigma$ cut in $\Delta \theta_{\mathrm{y}}{ }^{*}$

$\Theta_{\mathrm{x}}$ is measured with 5 m lever arm spectrometer

Compatible with the beam
divergence


## Preliminary t-distribution

$\sim 84 \mathrm{~K}$ elastic scattering candidate events TOTEM special run $\left(\sim 8 \mathrm{nb}^{-1}\right) \frac{(\mathrm{V}}{\overline{\mathrm{W}}}$ $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$
$\beta^{*}=3.5 \mathrm{~m}$
RPs @ $7 \sigma(\mathrm{~V})$ and $16 \sigma(\mathrm{H})$
"Raw" distribution:

- No smearing corrections
- No acceptance corrections
- No background subtraction

Sys. err. sources under study: alignment, beam position and
divergence, background, optical functions, efficiency, ...

## t - distribution : different models



50 k events in t- range:

$$
2-5 \mathrm{GeV}^{2}
$$

## Elastic Scattering - from ISR to Tevatron




Diffractive minimum: analogous to Fraunhofer diffraction:
$|t| \sim p^{2} \theta^{2}$


- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s $\rightarrow$ interaction region grows (as also seen from $\sigma_{\text {tot }}$ )
- depth of minimum changes
$\rightarrow$ shape of proton profile changes
- depth of minimum differs between $p p, p^{-} p$
$\rightarrow$ different mix of processes

Total Cross-Section and Elastic Scattering at low |t|


$$
\mathrm{L} \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N_{\text {elastic,nuclear }}}{d t}\right|_{t=0} \sigma_{\text {tot }}=N_{\text {elastic,nuclear }}+N_{\text {inelastic }}
$$

## Possibilities of $\rho$ measurement




Try to reach the Coulomb region and measure interference:

- move the detectors closer to the beam than $10 \sigma+0.5 \mathrm{~mm}$
- run at lower energy @ $V_{s}<14 \mathrm{TeV}$


## Measurement of the Inelastic Rate $\mathbf{N}_{\text {inel }}=\mathcal{L} \sigma_{\text {inel }}$

- Inelastic double arm trigger: robust against background, inefficient at small M
- Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency
- Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated
- Trigger on non-colliding bunches to determine beam-gas + halo rates.
- Vertex reconstruction with T1, T2 to suppress background
- Extrapolation of diffractive cross-section to large $1 / \mathrm{M}^{2}$ assuming $\mathrm{d} \sigma / \mathrm{dM}^{2} \sim 1 / \mathrm{M}^{2}$


|  | $\sigma$ [mb] | trigger loss <br> $[\mathrm{mb}]$ | systematic error after <br> extrapolations [mb] |
| :--- | :---: | :---: | :---: |
| Non-diffractive inelastic | 58 | 0.06 | 0.06 |
| Single diffractive | 14 | 3 | 0.6 |
| Double diffractive | 7 | 0.3 | 0.1 |
| Double Pomeron | 1 | 0.2 | 0.02 |
| Total | 80 | 3.6 | 0.8 |

## Combined Uncertainty in $\sigma_{\text {tot }}$

$$
\sigma_{\text {tot }}=\frac{16 \pi}{1+\rho^{2}} \frac{d N_{e l} /\left.d t\right|_{t=0}}{N_{e l}+N_{\text {inel }}} \quad \mathcal{L}=\frac{1+\rho^{2}}{16 \pi} \frac{\left(N_{e l}+N_{\text {inel }}\right)^{2}}{d N_{e l} /\left.d t\right|_{t=0}}
$$

$$
\begin{array}{rlr}
\beta^{*}= & 90 \mathrm{~m} & 1540 \mathrm{~m} \\
& \pm 4 \% & \pm 0.2 \% \\
& \pm 2 \% & \pm 0.1 \% \\
& \pm 1 \% & \pm 0.8 \%
\end{array}
$$

$$
\text { - Extrapolation of elastic cross-section to } t=0: \quad \pm 4 \% \quad \pm 0.2 \%
$$

$$
\text { - Total elastic rate (strongly correlated with extrapolation): } \pm 2 \% \quad \pm 0.1 \%
$$

- Total inelastic rate: (error dominated by Single Diffractive trigger losses)
- Error contribution from ( $1+\rho^{2}$ ) using full COMPETE error band $\delta \rho / \rho=33 \% \quad \pm 1.2 \%$
$\rightarrow$ Total uncertainty in $\sigma_{\text {tot }}$ including correlations in the error propagation:
$\rightarrow \quad \beta^{*}=90 \mathrm{~m}: \quad \pm 5 \%, \quad \beta^{*}=1540 \mathrm{~m}: \quad \pm(1 \div 2) \%$.
Slightly worse in $\mathcal{L}$ ( $\sim$ total rate squared!) : $\pm 7 \%$ ( $\pm 2 \%$ ).

Precise Measurement with $\beta^{*}=1540 \mathrm{~m}$ requires:

- improved knowledge of optical functions
- alignment precision $<50 \mu \mathrm{~m}$


## Central Diffraction (DPE)



Mass spectrum: change variables $\left(\xi_{1}, \xi_{2}\right) \rightarrow\left(\mathrm{M}_{\mathbf{P P}}, \mathrm{y}_{\mathbf{P P}}\right): \quad \mathrm{M}_{\mathbf{P P}}{ }^{2}=\xi_{1} \xi_{2} \mathrm{~s} ; \quad y_{\mathbf{P P}}=\frac{1}{2} \ln \frac{\xi_{1}}{\xi_{2}}$

$14 \mu \mathrm{~b} / \mathrm{GeV}$

$$
\begin{array}{|cc|}
\hline \frac{d^{2} \sigma}{d M^{2} d y} & 1 \\
\left(M^{2}\right)^{1+\varepsilon} \\
\hline
\end{array}
$$

$$
\beta^{*}=90 \mathrm{~m}: \sigma(\mathrm{M})=20-70 \mathrm{GeV}
$$

$1.4 \mathrm{nb} / \mathrm{GeV} \Leftrightarrow 50$ events $/(\mathrm{h} \cdot 10 \mathrm{GeV}) @ 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$\rightarrow$ sufficient statistics to measure the inclusive mass spectrum

## Track distribution for an inclusive trigger (global "OR")

Trigger on minibunch
Average number of min. bias events per bunch crossing : 0.02



# Single diffraction low $\xi$ 

sector 45 IP sector 56

run: 37280004, event: 22784

run: 37280003, event: 3000








## Single diffraction large $\xi$

sector 45 IP sector 56

run: 37280006, event: 9522









## Min. Bias and diffractive events

all events

no cut
high- $\xi$ SD candidates

track in 45 bottom, no track in 56 top, cut in RPs: $y>-4 \mathrm{~mm}$ and $x>5 \mathrm{~mm}$
low- $\xi$ SD candidates

track in 45 bottom, no track in 56 top, cut in RPs: $y>-4 \mathrm{~mm}$ and $|x|<0.1 \mathrm{~mm}$

## Double Pomeron Exchange


run: 37250009 , event: 14125









## Expected Results from 2010

Elastic scattering t -distribution from $0.4-5 \mathrm{GeV}^{2}$
Double Pomeron: mass distribution and kinematics

Single diffraction: correlation of $\eta$ and rapidity gaps

Forward multiplicity distributions

Multiplicity correlations over large rapidity gap

## Running Strategy for 2011

Repeat RP alignment at nominal conditions to understand new optics approach the RP detectors to the sharp beam edges produced by the LHC collimators

This will enable constant running at closer approaches to the beams ( $\sim 15 \sigma$ ) in normal runs improve statistics at large $t$-values

Special runs with several low proton density bunches plus one normal bunch: approach RP to $\sim 5 \sigma$ to reach lowest t around $0.2 \mathrm{GeV}^{2}$

Add one low-intensity bunch to the standard bunch train if possible Take data with T2 at reduced pile-up ( $<10^{-2}$ )

Prepare the $\beta^{*}=90 \mathrm{~m}$ optics
measure the total cross-section and luminosity

Targets: Approaching the RP closer to the beams enables $\sigma_{\text {tot }}$ and $\sigma_{\text {el }}$ with $\beta^{*}=90 \mathrm{~m}$ Rich programme with single diffraction and Double Pomeron Correlations between the forward proton and topologies in T1 and T2 With larger $\beta^{*} \sim 500-1000 \mathrm{~m}$ Coulomb region might be accessible

Studies in a new kinematical range might lead to unforeseen discoveries

$\xrightarrow[M-\infty]{\square=\square}$

End



## Silicon Edgeless Sensor for Roman Pots

Planar technology with CTS (C.ırrent Terminatinc Structure)

Efficiency at the edge



$$
\sigma=20 \mu \mathrm{~m}
$$

Single Diffraction, $V_{s}=7 \mathrm{TeV}, \beta^{*}=2 \mathrm{~m}$






$$
\begin{aligned}
& y(s)=v_{y}(\xi, s) \cdot y^{*}+L_{y}(\xi, s) \cdot \Theta_{y}^{*} \\
& x(s)=v_{x}(\xi, s) \cdot x^{*}+L_{x}(\xi, s) \cdot \Theta_{x}^{*}+\xi \cdot D(\xi, s)
\end{aligned}
$$

with

$$
\xi=\Delta \mathrm{p} / \mathrm{p} ; \mathrm{t}=\mathrm{t}_{\mathrm{x}}+\mathrm{t}_{\mathrm{y}} ; \mathrm{t}_{\mathrm{i}} \sim-\left(\mathrm{p} \theta_{\mathrm{i}}^{*}\right)^{2}
$$

$$
\left(x^{*}, y^{*}\right): \text { vertex position at IP }
$$

$$
\left(\theta_{x}{ }^{*}, \theta_{y}{ }^{*}\right): \text { emission angle at IP }
$$

Hits related to elastic scattering candidates

Tracks reconstructed in "left" (45) and "right" (56) sides

Single Diffraction, $V_{s}=7 \mathrm{TeV}, \beta^{*}=2 \mathrm{~m}$




## Elastic Scattering, $\sqrt{ } \mathrm{V}=7 \mathrm{TeV}, \beta^{*}=2 \mathrm{~m}$

Elastic scattering cross-section
KL/PP3 model, subrange of $-\mathrm{t}>0.3 \mathrm{GeV}^{2}$


Elastically scattered proton flux



## Double Pomeron exchange




Hit distribution for an inclusive trigger (global "OR")


## Acceptance for inelastic events (1)

Uncertainties in inelastic cross sections large:

- non-diffractive minimum bias (MB) $40-60 \mathrm{mb}$
- single diffraction (SD)
$10-15 \mathrm{mb}$
- double diffraction (DD)

4-11 mb
Low multiplicities in diffraction


## Accepted event fraction:

| Min. number of tracks | MB |  |  | DD |  |  | SD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T1+T2 | 1/2 T1 + T2 | T2 only | T1+T2 | 1/2 T1 + T2 | T2 only | T1+T2 | 1/2 T1 + T2 | T2 only |
| $\geq 1(L+R)$ | 100,0\% | 100,0\% | 98,2\% | 94,1\% | 92,9\% | 89,8\% | 77,6\% | 75,4\% | 71,3\% |
| $\geq 2(\mathrm{~L}+\mathrm{R})$ | 100.0\% | 99.5\% | 95.1\% | 88.9\% | 83.4\% | 73.8\% | 68.6\% | 61.9\% | 51.3\% |
| $\geq 3(L+R)$ | 99,9\% | 98,1\% | 89,0\% | 83,9\% | 75,3\% | 57.5\% | 61,4\% | 49,9\% | 32,3\% |
| $\geq 4(\mathrm{~L}+\mathrm{R})$ | 99,1\% | 95,9\% | 82,2\% | 78,2\% | 66,3\% | 45,5\% | 55,0\% | 40,0\% | 19,0\% |
| $\geq 5(L+R)$ | 98,3\% | 93,2\% | 71,7\% | 73,3\% | 59,5\% | 33,3\% | 48,4\% | 31,4\% | 11,5\% |
|  | 2 |  |  | 2 |  |  | 2 |  |  |

Efficiency increases

## Elastic Scattering Acceptances <br> $\beta^{*}=1540 \quad 2$

$$
\beta^{*}=1540 \mathrm{~m}
$$

Detector distance to the beam: $10 \sigma+0.5 \mathrm{~mm}$



Detector distance 1.3 mm
6 mm

