

Results, Status and Perspectives for 2010/11

Karsten Eggert on behalf of the TOTEM Collaboration

Workshop on Hadron – Hadron & Cosmic-Ray Interactions at multi-TeV Energies ECT* - Trento, Nov 29th – Dec 3rd, 2010

Experimental Setup @ IP5

Roman Pots: measure elastic & diffractive protons close to outgoing beam

All T1 Modules Ready in the Test Beam Zone

- Successfully tested with pion and muon beams in May June
- Both arms are completely assembled and equipped in the test beam line H8.
- Both telescope arms ready for installation
- TOTEM aims at the installation of both T1 telescope arms during the winter technical stop to enable first total cross-section measurements in 2011.

Both arms successfully tested with pion and muon beams Pions on copper target to get many-tracks events

T2 Telescope

2 arms of GEMs for tracks and vertex reconstruction

5.2< $|\eta|$ <6.5 $\Delta \phi$ =2 π

Both arms installed and taking data

Installation of half T2 Telescope

Half a telescope assembled in lab

The GEMs are installed as pairs with a back-to-back configuration.

Installation

The Roman Pot System

Roman Pot System

All 12 Roman Pots at \pm 220 m from IP5 are operational: delivering data with active triggers.

RP147 detector assemblies to be installed in winter technical stop.

Until June: data were taken with RP220 in retracted position.

Units installed into the beam vacuum chamber allowing to put proton detectors as close as possible to the beam

'Edgeless' detectors to minimize d

Each RP station has 2 units, 5m apart. Each unit has 2 vertical insertions ('pots') and 1 horizontal

TOTEM: Acceptance

Proton Acceptance in (t, ξ): $(\xi = \Delta p/p)$

(contour lines at A = 10 %)

ξ = ∆p /p

All TOTEM detectors have trigger capability.

Overview 2010

30.03.	first T2 run: tracks seen		
April	T2 commissioning with beam, RP comm. in garage position, bunch-crossing trigger		
21.04.	first tracks in RPs in garage position, active trigger		
15.05.	first T2 data with squeezed optics	$\beta^* = 2m$ 2 b., 2e10 p/b	
25.06.	RP beam-based alignment	450 GeV, $\beta^* = 11m$ 1 b., 3e10 p/b later 9e10 p/b	
04.07.	first T2 data with nominal bunches	$\beta^* = 3.5 \text{m},$ 1e11 p/b (nom.)	
13.–14. 07.	RP insertion to 30σ in stable beams	8 nom. b.	
15.07.– 04.08.	RP insertion to 25 σ (V) and 30 σ (H) in stable beams	8 – 16 nom. b.	1.5 nb ⁻¹ → first 2 elastic candidates
09.08.	partial RP beam-based alignment	3.5 TeV, 1 nom. b.	
11.08.	RP loss map measurement to qualify 20σ settings		
18.08.	first RP insertion to 20σ (V) and 25σ (H)	16 nom. b.	

Overview 2010 (continued)

2426. 08.	RP insertions to 20 σ (V) and 25 σ (H)	16 nom. b.	184.6 nb ⁻¹
21.09.	RP beam-based alignment and run at 7 σ	1 nom. b.	0.88 nb ⁻¹
28.09 28.10.	RP insertions to 18σ (V) and 20σ (H)	93 – 348 nom. b.	3867.1 nb ⁻¹
30.10.	special run: RPs inserted to 7 σ (V) and 16 σ (H) pileup-free data for T2 (trigger on pilot) common run RP + T2	1 pilot b. (1e10) + 4 b. x 7e10 p/b.	8.6 nb ⁻¹

Total:

25 σ	1.5 nb ⁻¹
20 σ	185 nb ⁻¹
18 σ	3867 nb ⁻¹
7σ	9.5 nb ⁻¹

Fully installed, operative and commissioned on data

Track dN_{CH}/dη (Statistical error only)

Work in progress on:

- Understanding secondary contribution and smearing effects
- Proper tuning of detector performance simulation
- Optimization of trk algorithm and selection cuts for improved rejection of secondary charged tracks,
- Estimation of systematic

IP5

Beam Pipe cone at $\eta \sim 5.54$ (>100 radiation lengths)

Track dN_{CH}/dη (Statistical error only)

Track dN_{cH}/dη (Statistical error only)

400K inelastic events from dedicated run with low proton density bunches.

- No smearing corrections

"Raw" distribution:

- No efficiency corrections
- No secondaries contribution subtraction

Work ongoing on unfolding corrections

Collimation-Based Roman Pot Alignment w.r.t. the Beam Centre

Alignment is the central problem of Roman Pot measurements

LHC collimation system produces sharp beam edges

 \rightarrow used to align Roman Pots and to determine the centre of the beam (same procedure as collimator setup)

When both top and bottom pots "feel" the edge:

- they are at the **same number of sigmas** from the beam centre **as the collimator**
- the beam centre is exactly in the middle between top and bottom pot

Measurement of Forward Diffractive and Elastic Protons: the principle

Detect the proton via:

its momentum loss (low ϑ)

its transverse momentum (high δ)

TOTEM

p. 20

Detector requirements:

To approach the beam as close as possible: almost edgeless detectors Reliable movement system with solid mechanical stability for reproducible alignment high resolution of typically 20µm Trigger capability with large flexibility

LHC Optics

$$x(s) = L_x(s,\xi) \,\theta_x^* + v_x(s,\xi) \,x^* + D_x(s,\xi) \,\xi$$
$$y(s) = L_y(s,\xi) \,\theta_y^* + v_y(s,\xi) \,y^* + D_y(s,\xi) \,\xi$$

 $\xi = \frac{\Delta p}{p}$

Large Chromaticity effects

Physics with RP detectors

Elastic scattering, $\sqrt{s} = 7$ TeV, $\beta^* = 2$ m

Vertical RPs contain all events $\sigma(|t|) = 0.1 - 0.5 \text{ GeV}^2 (\propto \sqrt{|t|})$

Track map (side 4,5) for left right coincidences

Track map (side 5,6) for left right coincidences

Karsten Eggert– p. 24

Collinearity in θ_v

Low ξ , i.e. $|\mathbf{x}| < 0.4$ mm and 2σ cut in $\Delta \theta_{\mathbf{x}}^*$

Collinearity in θ_x

Low ξ , i.e. $|\mathbf{x}| < 0.4$ mm and 2σ cut in $\Delta \theta_{\mathbf{v}}^*$

Karsten Eggert– p. 26

Preliminary t-distribution

 $\sqrt{s} = 7 \text{ TeV}$ $\beta^* = 3.5 \text{ m}$ RPs @ 7 σ (V) and 16 σ (H) <u>"Raw" distribution:</u> - No smearing corrections - No acceptance corrections

- No background subtraction

Sys. err. sources under study: alignment, beam position and divergence, background, optical functions, efficiency, ...

t – distribution : different models

50 k events in t- range:

TOTEM

 $2-5 \text{ GeV}^2$

Elastic Scattering - from ISR to Tevatron

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s
 - \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 → shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 → different mix of processes

Total Cross-Section and Elastic Scattering at low |t|

Measure the exponential slope B in the t-range 0.002 - 0.2 GeV², extrapolate $d\sigma/dt$ to t=0, measure total inelastic and elastic rates (all TOTEM detectors provide L1 triggers):

$$L\sigma_{tot}^{2} = \frac{16\pi}{1+\rho^{2}} \times \frac{dN_{elastic,nuclear}}{dt}\Big|_{t=0}$$

$$\sigma_{tot} = \frac{16\pi}{1+\rho^{2}} \times \frac{(dN_{elastic,nuclear} / dt)\Big|_{t=0}}{N_{elastic,nuclear} + N_{inelastic}}$$

Possibilities of ρ measurement

Try to reach the Coulomb region and measure interference:

- move the detectors closer to the beam than 10 σ + 0.5 mm
- run at lower energy @ $\sqrt{s} < 14 \text{ TeV}$

Measurement of the Inelastic Rate $N_{inel} = \mathcal{L}\sigma_{inel}$

- Inelastic double arm trigger: robust against background, inefficient at small M
- Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency
- Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated
- Trigger on non-colliding bunches to determine beam-gas + halo rates.
- Vertex reconstruction with T1, T2 to suppress background
- Extrapolation of diffractive cross-section to large $1/M^2$ assuming $d\sigma/dM^2 \sim 1/M^2$

	σ [mb]	trigger loss [mb]	systematic error after extrapolations [mb]
Non-diffractive inelastic	58	0.06	0.06
Single diffractive	14	3	0.6
Double diffractive	7	0.3	0.1
Double Pomeron	1	0.2	0.02
Total	80	3.6	0.8

Combined Uncertainty in σ_{tot}

$$\sigma_{tot} = \frac{16\pi}{1+\rho^2} \frac{dN_{el} / dt|_{t=0}}{N_{el} + N_{inel}} \qquad \qquad \mathcal{L} = \frac{1+\rho^2}{16\pi} \frac{\left(N_{el} + N_{inel}\right)^2}{dN_{el} / dt|_{t=0}}$$

	β* = 90 m	1540 m
Extrapolation of elastic cross-section to t = 0:	±4%	± 0.2 %
Total elastic rate (strongly correlated with extrapolation):	± 2 %	± 0.1 %
Total inelastic rate:	±1%	± 0.8 %
(error dominated by Single Diffractive trigger losses)		
Error contribution from $(1+\rho^2)$		

• Error contribution from $(1+\rho^2)$ using full COMPETE error band $\delta\rho/\rho = 33 \%$

± 1.2 %

- → Total uncertainty in σ_{tot} including correlations in the error propagation:
- → $\beta^* = 90 \text{ m}$: ± 5 %, $\beta^* = 1540 \text{ m}$: ± (1 ÷ 2) %.

Slightly worse in \mathcal{L} (~ total rate squared!) : \pm 7 % (\pm 2 %).

Precise Measurement with β^* = 1540 m requires:

- improved knowledge of optical functions
- alignment precision < 50 μ m

Central Diffraction (DPE)

5-dimensional differential cross-section: $\frac{d^{5}\sigma}{dt_{1} dt_{2} d\xi_{1} d\xi_{2} d\phi} \Box \frac{1}{\xi_{1}^{1+\varepsilon}} \frac{1}{\xi_{2}^{1+\varepsilon}} e^{-b|t_{1}|-b|t_{2}|}$ Any correlations?

Mass spectrum: change variables $(\xi_1, \xi_2) \rightarrow (M_{PP}, y_{PP})$: $M_{PP}^2 = \xi_1 \xi_2 s$; $y_{PP} = \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$

$$\boxed{\frac{d^2\sigma}{dM^2 dy} \Box \frac{1}{\left(M^2\right)^{1+\varepsilon}}}$$

p. 34

A × 1/N × dN/dM (1/10GeV) 0, 0, 0. normalised DPE Mass Distribution (acceptance corrected) 14 µb / GeV B[•]=1540 B'=90 $\sigma(M)$ 10 $\beta^*=90m: \sigma(M) = 20 - 70 \text{ GeV}$ 10⁻⁵) 1.4 nb / GeV ⇔ 50 events / (h •10GeV) @ 10³⁰ cm⁻² s⁻¹ $\sigma(M)/M = 2\%$ \rightarrow sufficient statistics to measure the 10 0 200 1000 1200 1400 2000 400 600 800 inclusive mass spectrum M(GeV) Karsten Eggert-

Track distribution for an inclusive trigger (global "OR")

Trigger on minibunch

Average number of min. bias events per bunch crossing : 0.02

Single diffraction low ξ

Single diffraction large ξ

run: 37280006, event: 9522

Min. Bias and diffractive events

no cut

track in 45 bottom, no track in 56 top, cut in RPs: y > -4 mm and x > 5 mm

track in 45 bottom, no track in 56 top, cut in RPs: y > -4 mm and |x| < 0.1 mm

Double Pomeron Exchange

150 g

100 2

50

0

-50 E

-100

-150 ^L

(mm)

З

-150

(mm)

'n

run: 37250009, event: 14125

T2, sector 56

150

 $x \pmod{(\mathbf{m})}$

0

Expected Results from 2010

Elastic scattering t –distribution from 0.4 $\,$ - 5 GeV^2

Double Pomeron: mass distribution and kinematics

Single diffraction: correlation of η and rapidity gaps

Forward multiplicity distributions

Multiplicity correlations over large rapidity gap

Running Strategy for 2011

Repeat RP alignment at nominal conditions to understand new optics approach the RP detectors to the sharp beam edges produced by the LHC collimators

This will enable constant running at closer approaches to the beams (~15 σ) in normal runs improve statistics at large *t*-values

Special runs with several low proton density bunches plus one normal bunch: approach RP to ~ 5 σ to reach lowest t around 0.2 GeV²

Add one low-intensity bunch to the standard bunch train if possible Take data with T2 at reduced pile-up ($< 10^{-2}$)

Prepare the $\beta^* = 90$ m optics measure the total cross-section and luminosity

Targets:Approaching the RP closer to the beams enables σ_{tot} and σ_{el} with $\beta^*=90m$ Rich programme with single diffraction and Double PomeronCorrelations between the forward proton and topologies in T1 and T2With larger $\beta^* \sim 500 - 1000m$ Coulomb region might be accessible

CMS + TOTEM: Acceptance

largest acceptance detector ever built at a hadron collider

Studies in a new kinematical range might lead to unforeseen discoveries

Penn State University, University Park

Case Western Reserve Univ., Cleveland, Ohio

USA

Estonian Academy of Sciences, Tallinn, Estonia

The TOTEM Collaboration

INFN Sezione di Bari and Politecnico di Bari, Bari, Italy

MTA KFKI RMKI. Budapest, Hungary

Academy of Sciences, Praha, Czech Republic

CERN, Geneva, Switzerland Università di Siena and Sezione INFN-Pisa, Italy

Università di Genova and Sezione INFN, Genova, Italy University of Helsinki and HIP Helsinki, Finland

End

Single Diffraction, $\sqrt{s} = 7$ TeV, $\beta^* = 2$ m

Karsten Eggert– p. 48

"Raw" Data: Hit Map for Left-Right Coincidences

$$\begin{array}{lll} y(s) &=& v_y(\xi,s) \cdot y^* + L_y(\xi,s) \cdot \Theta_y^* \\ x(s) &=& v_x(\xi,s) \cdot x^* + L_x(\xi,s) \cdot \Theta_x^* + \xi \cdot D(\xi,s) \end{array}$$

with

 $\xi = \Delta p/p; t = t_x + t_y; t_i \sim -(p\theta_i^*)^2$ (x*, y*): vertex position at IP (θ_x^*, θ_y^*): emission angle at IP

Hits related to elastic scattering candidates

Tracks reconstructed in "left" (45) and "right" (56) sides

Single Diffraction, $\sqrt{s} = 7$ TeV, $\beta^* = 2$ m

Elastic Scattering, $\sqrt{s} = 7$ TeV, $\beta^* = 2$ m

TOTEM

Elastically scattered proton flux

Karsten Eggert-

Double Pomeron exchange

Hit distribution for an inclusive trigger (global "OR")

Acceptance for inelastic events (1)

Uncertainties in inelastic cross sections large:

- non-diffractive minimum bias (MB) 40 60 mb
- single diffraction (SD) 10 – 15 mb
- double diffraction (DD)
 4 11 mb

Low multiplicities in diffraction

Accepted event fraction:

		MB		101 CT 101 CT	DD			SD	
Min. number of tracks	T1+T2	1/2 T1 + T2	T2 only	T1+T2	1/2 T1 + T2	T2 only	T1+T2	1/2 T1 + T2	T2 only
≥1(L + R)	100,0%	100,0%	98,2%	94,1%	92,9%	89,8%	77,6%	75,4%	71,3%
≥2(L + R)	100,0%	99.5%	95,1%	88,9%	83.4%	73.8%	68.6%	61.9%	51.3%
≥3(L + R)	99,9%	98,1%	89,0%	83,9%	75,3%	57,5%	61,4%	49,9%	32,3%
≥4(L + R)	99,1%	95,9%	82,2%	78,2%	66,3%	45,5%	55,0%	40,0%	19,0%
≥5(L + R)	98.3%	93.2%	71.7%	73.3%	59.5%	33.3%	48.4%	31.4%	11.5%

Elastic Scattering Acceptances $\beta^* = 1540 \ 90 \ 2 \ m$

