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TOTEM Physics Overview
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Experimental Setup @ IP5

IP5

RP147 RP220RP220

Roman Pots: measure elastic & diffractive protons close to outgoing beam

Inelastic telescopes: charged particle 

& vertex reconstruction in inelastic events

IP5

T1: 3.1 <  < 4.7

T2: 5.3 <  < 6.5

~ 10 m

~ 14 m T1 CASTOR (CMS)

HF 
(CMS)

T2T2

T1: 18 – 90 mrad

T2: 3 – 10 mrad



All T1 Modules Ready in the Test Beam Zone
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• Successfully tested with pion and muon beams in May – June

• Both arms are completely assembled and equipped in the test beam line H8.

• Both telescope arms ready for installation

• TOTEM aims at the installation of both T1 telescope arms during the winter technical stop to enable 

first total cross-section measurements in 2011.



T1 telescope performance

Both arms successfully tested with pion and muon beams

Pions on copper target to get many-tracks events

Cu 
target

Beam 
monitor 
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CSC efficiencies with muons

(triple coincidences)

 reconstructed hits

Longitudinal vertex

Transverse vertex
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2 arms of GEMs for tracks and 

vertex reconstruction

5.2<||<6.5Df=2

Both arms installed and taking 

data
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T2 Telescope
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Installation of half T2 Telescope

InstallationInstallationInstallationInstallation

The GEMs are 

installed as pairs with 

a back-to-back 

configuration.

Half a telescope assembled in lab



The Roman Pot System
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Roman Pot System

Roman Pot detector assembly

All 12 Roman Pots at ±220 m from IP5 are operational:   delivering data with active 

triggers.

RP147 detector assemblies to be installed in winter technical stop.

Until June: data were taken with RP220 in retracted position.



Beampipes

Each RP station has 2 units, 5m apart.

Each unit has 2 vertical insertions (‘pots’) 

and 1 horizontal

Units installed into the beam vacuum 
chamber allowing to put proton detectors 
as close as possible to the beam

‘Edgeless’ detectors to minimize d

Horizontal Pot           Vertical Pot        BPM
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TOTEM: Acceptance

All TOTEM detectors have trigger capability.

Inelastic Acceptance in :

non-diffractive minimum bias events:
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Charged 

particles

per event

single-diffractive events:

Proton Acceptance in (t, x):     (x= Dp/p)

(contour lines at A = 10 %)

t = p2 d2 

x = Dp /p
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Overview 2010

30.03. first T2 run: tracks seen

April T2 commissioning with beam, 

RP comm. in garage position, bunch-crossing trigger

21.04. first tracks in RPs in garage position, active trigger

15.05. first T2 data with squeezed optics b* = 2m

2 b.,   2e10 p/b

25.06. RP beam-based alignment 450 GeV,  b* = 11m

1 b., 3e10 p/b

later 9e10 p/b

04.07. first T2 data with nominal bunches b* = 3.5m, 

1e11 p/b (nom.)

13.-14.

07.

RP insertion to 30 s in stable beams 8 nom. b.

15.07.-

04.08.

RP insertion to 25 s (V) and 30 s (H) in stable 

beams

8 – 16 nom. b.

09.08. partial RP beam-based alignment 3.5 TeV, 1 nom. b.

11.08. RP loss map measurement to qualify 20 s settings

18.08. first RP insertion to 20 s (V) and 25 s (H) 16 nom. b.

1.5 nb-1

 first 2 elastic  
candidates
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Overview 2010 (continued)

24.-26. 

08.

RP insertions to 20 s (V) and 25 s (H) 16 nom. b. 184.6 nb-1

21.09. RP beam-based alignment and run at 7 s 1 nom. b. 0.88 nb-1

28.09. -

28.10.

RP insertions to 18 s (V) and 20 s (H) 93 – 348 nom. b. 3867.1 nb-1

30.10. special run:

RPs inserted to 7 s (V) and 16 s (H)

pileup-free data for T2 (trigger on pilot)

common run RP + T2

1 pilot b. (1e10) +

4 b. x 7e10 p/b.

8.6 nb-1

25s 1.5 nb-1

20s 185 nb-1

18s 3867 nb-1

7s 9.5 nb-1

Total:



T2
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Fully installed, operative

and commissioned on data 



Work in progress on:

- Understanding secondary

contribution and smearing effects

- Proper tuning of detector

performance simulation

- Optimization of trk algorithm and

selection cuts for improved rejection

of secondary charged tracks,

- Estimation of systematic

uncertainties 

IP5H
F

H
F

H
F

H
F Beam Pipe cone at  ~ 5.54 

(>100 radiation lengths)
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Preliminary studies with Pythia + full Geant detector simulation





- No smearing corrections

“Raw” distribution:      - No efficiency corrections

- No secondaries contribution subtraction

Work ongoing on unfolding corrections

400K inelastic events from 

dedicated run with low proton 

density bunches.
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Collimation-Based Roman Pot Alignment 

w.r.t. the Beam Centre

Alignment is the central problem of Roman Pot measurements

LHC collimation system produces sharp beam edges

 used to align Roman Pots and to determine the centre of the beam

(same procedure as collimator setup)

Collimator cuts a sharp beam

edge symmetrically to the centre

RP approaches this

edge until it scrapes

produces spike in Beam 

Loss Monitor downstream

When both top and bottom pots “feel” the edge:

• they are at the same number of sigmas from the beam centre as the collimator

• the beam centre is exactly in the middle between top and bottom pot 

second RP 

approaches



Detect the proton via:

its momentum loss (low )                                             its transverse momentum (high )‏

Detector requirements:

To approach the beam as close as possible: almost edgeless detectors

Reliable movement system with solid mechanical stability for reproducible alignment 

high resolution of typically 20mm

Trigger capability with large flexibility

Measurement of Forward Diffractive and Elastic Protons: the principle

Hit distribution @ RP220

Diffractive protons elastic scattering

low  = 0.5 - 2 m                                                                              high 0 m

10

x ~ p/p

y
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m
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y
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10

Karsten Eggert– p. 20



LHC Optics
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Large Chromaticity effects



Physics with RP detectors 

Elastic scattering, s = 7 TeV, β* = 2 m

[mb/mm2]

Elastically scattered proton flux

RP220

10 σ beam

envelope

Vertical RPs contain all events

s(|t|) = 0.1 - 0.5 GeV2 (|t|)
PPP3, 3 pomeron model: sacc  4 mb

s el ~ 20 mbarn
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Track map (side 4,5)  for left right coincidences
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t

x



Track map (side 5,6)  for left right coincidences
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Collinearity in qy
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Compatible with the beam divergence

Low x, i.e. |x| < 0.4 mm and 2s cut in Dqx*



Collinearity in qx
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Compatible with the beam 

divergence

Low x, i.e. |x| < 0.4 mm and 2s cut in Dqy*

Qx is measured with 5m lever arm spectrometer



“Raw” distribution:

- No smearing corrections

- No acceptance corrections

- No background subtraction

Sys. err. sources under study:

alignment, beam position and

divergence, background, 

optical functions, efficiency, … 

 84K elastic scattering candidate events TOTEM special run (~ 8 nb -1) 

s = 7 TeV

b* = 3.5 m 

RPs @ 7 s (V) and 16 s (H)
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Preliminary t-distribution



t – distribution : different models
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50 k events in t- range:

2 – 5 GeV2



~1.5 GeV2

Diffractive minimum: analogous to Fraunhofer diffraction:          |t|~p2 q2

Elastic Scattering Elastic Scattering -- from ISR to Tevatron from ISR to Tevatron 

~ 0.7 GeV2

~ 1.7 GeV2

• exponential slope B at low |t| increases

• minimum moves to lower |t| with increasing s

 interaction region grows (as also seen from stot)

• depth of minimum changes 

 shape of proton profile changes

• depth of minimum differs between pp, pˉp

 different mix of processes

ISR
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Total CrossTotal Cross--Section and Elastic Scattering at low |t|Section and Elastic Scattering at low |t|

TOTEM Approach: 

Measure the exponential slope B in the t-range 0.002 - 0.2 GeV2 , extrapolate ds/dt to t=0,

measure total inelastic and elastic rates (all TOTEM detectors provide L1 triggers):

Optical Theorem: ( ,

4
( 0)

tot elastic nuclear
T t

s


s =  =

 = fine structure constant

f = relative Coulomb-nuclear phase

G(t) = nucleon el.-mag. form factor = (1 + |t| / 

0.71)-2

= Re / Im Telastic,nuclear(t = 0)

Coulomb scattering

Nuclear scattering

Coulomb-Nuclear 

interference
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Try to reach the Coulomb region and measure interference:

• move the detectors closer to the beam than 10 s + 0.5 mm

• run at lower energy  @ √s < 14 TeV

Possibilities of  measurement

asymptotic behaviour:

1 / ln s  for  s 

 pred. ~ 0.13 at LHC

( )
( ) ss

s tot

tot lnd

d

2

s

s

p
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Measurement of the Inelastic Rate  Ninel = L sinel

ss[mb][mb] trigger losstrigger loss
[mb][mb]

systematic error after systematic error after 
extrapolations [mb]extrapolations [mb]

NonNon--diffractive inelasticdiffractive inelastic 5858 0.060.06 0.060.06

Single diffractiveSingle diffractive 1414 3 3 0.60.6

Double diffractiveDouble diffractive 77 0.30.3 0.10.1

Double PomeronDouble Pomeron 11 0.20.2 0.020.02

TotalTotal 8080 3.63.6 0.8

Acceptance

single diffraction

simulated

extrapolated
detectedLoss at low 

diffractive 

masses M

• Inelastic double arm trigger: robust against background, inefficient at small M

• Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency

• Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated

• Trigger on non-colliding bunches to determine beam-gas + halo rates.

• Vertex reconstruction with T1, T2 to suppress background

• Extrapolation of diffractive cross-section to large 1/M2 assuming ds/dM2 ~ 1/M2
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Combined Uncertainty in stot

b* = 90 m 1540 m

• Extrapolation of elastic cross-section to t = 0:                           ± 4 %         ± 0.2 %

• Total elastic rate (strongly correlated with extrapolation):         ± 2 % ± 0.1 %

• Total inelastic rate:                                                                    ± 1 %        ± 0.8 % 

(error dominated by Single Diffractive trigger losses)

• Error contribution from (1+2) 

using full COMPETE error band d/ = 33 %                                   ± 1.2 %

 Total uncertainty in stot including correlations in the error propagation: 

 b* = 90 m : ± 5 %,           b* = 1540 m : ± (1 ÷ 2) % .

Slightly worse in L (~ total rate squared!) : ± 7 %  (± 2 %).

Precise Measurement with b* = 1540 m requires:

• improved knowledge of optical functions

• alignment precision < 50 mm
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Central Diffraction (DPE)

M
PP

2 = x1 x2 s ;

normalised DPE Mass Distribution 

(acceptance corrected)
14 mb / GeV

1.4 nb / GeV    50 events / (h •10GeV) @ 1030 cm-2 s-1

1

2

1
ln

2
y

x

x
=

PP

 sufficient statistics to measure the 

inclusive mass spectrum

b*=90m: s(M) = 20 – 70 GeV
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| | | |
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5-dimensional differential cross-section:

Any correlations?

Mass spectrum: change variables (x1,x2)  (MPP, yPP):
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2
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2

1d

dM dy M


s


s(M) = 20 – 70 GeV

s(M)/M = 2 %



Track distribution for an inclusive trigger (global “OR”)
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Trigger on minibunch

Average number of min. bias events per bunch crossing : 0.02



Single diffraction low x
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RP RPT2 T2

IPsector 45 sector 56



Single diffraction large x
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RP RPT2 T2

IPsector 45 sector 56



Min. Bias and diffractive events
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Double Pomeron Exchange

p. 39Karsten Eggert–

RP RPT2 T2

IPsector 45 sector 56

low ξ high ξ



Expected Results from 2010

p. 40Karsten Eggert–

Elastic scattering t –distribution from 0.4  - 5 GeV2

Double Pomeron: mass distribution and kinematics

Single diffraction: correlation of  and rapidity gaps

Forward multiplicity distributions

Multiplicity correlations over large rapidity gap
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Running Strategy for 2011

Repeat RP alignment at nominal conditions to understand new optics

approach the RP detectors to the sharp beam edges produced by the LHC collimators

This will enable constant running at closer approaches to the beams (~15 sin normal runs

improve statistics at large t-values

Special runs with several low proton density bunches plus one normal bunch: 

approach RP to ~ 5 sto reach lowest t around 0.2 GeV2

Add one low-intensity bunch to the standard bunch train if possible

Take data with T2 at reduced pile-up (< 10 -2 )

Prepare the b* = 90 m optics

measure the total cross-section and luminosity

Targets: Approaching the RP closer to the beams enables s tot and s el with b*=90m

Rich programme with single diffraction and Double Pomeron 

Correlations between the forward proton and topologies in T1 and T2

With larger b* ~ 500 – 1000m Coulomb region might be accessible



Studies in a new kinematical range might lead to unforeseen discoveries 

largest acceptance detector ever built at a hadron collider

CMS + TOTEM: Acceptance

CMS

central

T1

HCal

T2
CASTOR

bb**=90m=90m

RPs

bb**=1540m=1540m

ZDC

 = - ln tg q/2
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The TOTEM CollaborationThe TOTEM Collaboration
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End
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Silicon Edgeless Sensor for Roman Pots

5
0
 µ

m

Planar technology with CTS

(Current Terminating Structure)

Efficiency at the edge

s = 20 µm
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t

x

“Raw” Data: Hit Map for Left-Right Coincidences

x = Dp/p; t = tx + ty; ti ~ -(pqi*)2

(x*, y*):  vertex position at IP

(qx
*,qy

*): emission angle at IP

Hits related to elastic 

scattering candidates

Tracks reconstructed in “left” (45) and “right” (56) sides

Side 45
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0.6 2.5 4 GeV2

acceptance

1 1.60.40.25

10s 20s

15s

Elastic scattering cross-section
KL/PP3 model, subrange of -t > 0.3 GeV2

[mb/mm2]

Elastically scattered proton flux

RP220

10 s beam
envelope

20s

10s

Elastic Scattering, s = 7 TeV, b* = 2 m
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Double Pomeron exchange
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Hit distribution for an inclusive trigger (global “OR”)

p. 54Karsten Eggert–Karsten Eggert– p. 54



Efficiency increases

4

5

3

2

1

PHOJET

s = 7 TeV

T2

Uncertainties in inelastic 

cross sections large:

• non-diffractive minimum 

bias (MB) 40 - 60 mb

• single diffraction (SD)              

10 - 15 mb

• double diffraction  (DD)               

4 - 11 mb

Accepted event fraction:

T2T1 T1

Acceptance for inelastic events (1)
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
Low multiplicities in diffraction



Elastic Scattering Acceptances

b* = 1540  90  2  m

Detector distance  1.3 mm       6 mm

Detector distance to the beam: 10s+0.5mm

-t = 0.01  GeV2

-t = 0.002 GeV2

Beam

b*=1540 m

b*=2 m

b*=90 m

log(-t / GeV2)

0.002 0.06 4.0

b* = 1540 m
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