
LHCb QCD results

Sebastian Schleich on behalf of the LHCb collaboration

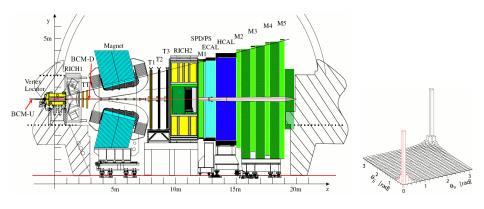
ECT Trento 29.11.2010

Outline

1. the LHCb experiment QCD at LHCb LHCb data

2. strangeness production

 K_S^0 production ϕ production

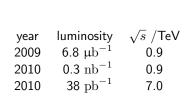

3. V0 ratios

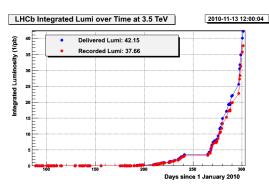
 $\overline{\Lambda}$ / Λ ratio $\overline{\Lambda}$ / K_S^0 ratio

- 4. \overline{p}/p ratio
- 5. vector boson production

Drell Yan p_T spectrum W production p_T spectrum charge asymmetry $W \to \mu\nu$

the LHCb experiment




- single arm forward spectrometer $1.9 < \eta < 4.9$
- ▶ aims at precision measurements of CP violation in the b sector
- excellent lifetime resolution:
 VELO, 5 mm distance to beam, movable device
- $ightharpoonup 2 \cdot 10^4$ b-quarks per second

QCD at LHCb

- \blacktriangleright first data recorded at the LHC at $\sqrt{s}=900~{\rm GeV}$ and $\sqrt{s}=7~{\rm TeV}$
- two complementary efforts:
 - calibrate detector, understand tracking, PID ...
 - measure inclusive particle spectra, ratios, ...
- ▶ LHCb: studies in high- η region at unprecedented CM energy
- splendid input to QCD models:
 - ightharpoonup strangeness production ightharpoonup fragmentation models
 - ▶ antiparticle/particle ratios → baryon number transport
 - ▶ baryon/meson ratios → fragmentation models

recorded Luminosity

...90% data taking efficiency!

in this talk:

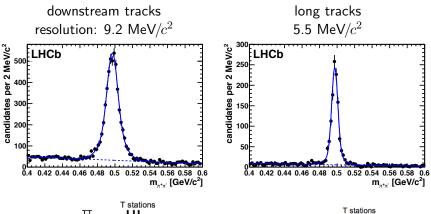
m tmo tam.	$\sqrt{s} = 900 \text{ GeV}$	$\sqrt{s}=7~{\rm TeV}$
$K_{\scriptscriptstyle S}^0$ cross section	X	
ϕ cross section		Χ
V0 ratios	X	X
$p/\;\overline{p}$ ratio	X	X
W production		X

trigger conditions

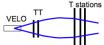
the LHCb trigger system

- ▶ Level 0: custom hardware (40 $MHz \rightarrow 1 MHz$)
- ▶ Higher Level Trigger: computing farm
 - ► Hlt1: (1 MHz \rightarrow 40 kHz) ► Hlt2: (40 kHz \rightarrow 2 kHz)

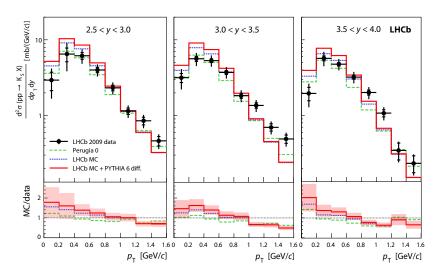
first data:

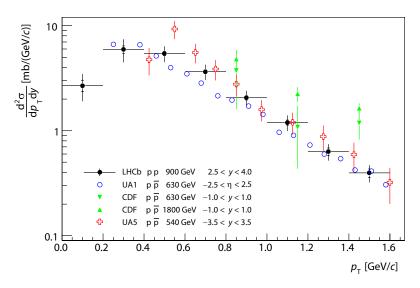

- started with Minimum Bias trigger
- commissioned full system with growing event rate

K_s^0 production


Physics Letters B 693 (2010) pp. 69-80 arXiv:1008.3105v2

- K_s^0 reconstructed in $K_s^0 \to \pi^+\pi^-$
- analyzed data from pilot run 2009
- low requirements on reconstruction, PID...
 - ideal 'first physics' channel
 - testing ground for detector understanding/calibration
- K_S⁰ decay in distance from primary vertex
- two separate analyses done (with/without VELO information)

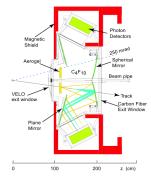

K_s^0 production



$K_{\rm S}^0~p_T$ spectra at $\sqrt{s}=900~{\rm GeV}$

• harder p_T spectrum in data than MC

Comparison with other experiments

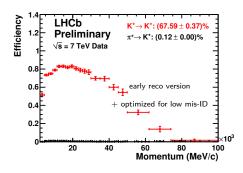



measurement range extended by LHCb towards low p_T

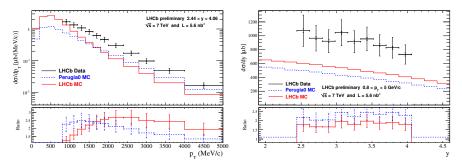
ϕ production

two fold purpose:

- extremely good test for strangeness production (100% strange final state)
- study RICH PID system

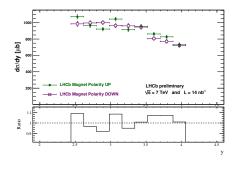


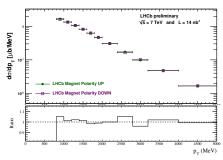
ϕ production


lacktriangledown ϕ production cross section measured in bins of transverse momentum p_T and rapidity y

RICH PID cut efficiency determined on data (tag&probe)

- apply PID cut on at least one kaon
- subsequently cut on the second kaon
- deduce PID cut efficiency

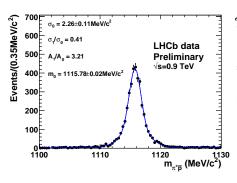

$\boldsymbol{\phi}$ cross section projections

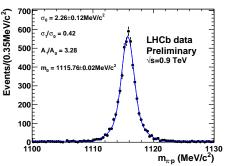


- error bars show total uncertainties, including correlated systematics
- \blacktriangleright ϕ production underestimated in the measured kinematic range by both PYTHIA tunings
- \blacktriangleright harder p_T spectrum as compared to MC

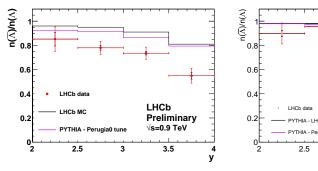
ϕ magnet-up and magnet-down

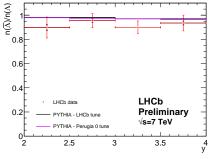
- the LHCb magnet polarity can be reversed to minimize systematics
- ▶ PID needs to be calibrated independently
- φ analysis done separately on both data sets OK!

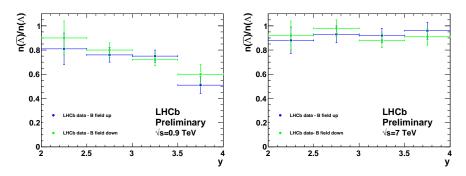

V0 ratios

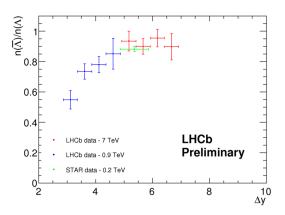

identification:

$$\begin{array}{ccc} \underline{\Lambda} & \underline{\Lambda} \to p \; \pi^- \\ \overline{\Lambda} & \overline{\Lambda} \to \overline{p} \; \pi^+ \\ K_s^0 & K_s^0 \to \pi^+ \; \pi^- \end{array}$$

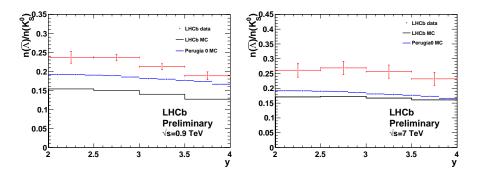

- ▶ PID purely kinematic (Armenteros-Podolanski)
- $lackbox{ }K^0_{\scriptscriptstyle S}$ and \varLambda selection based on impact parameters
- independent from luminosity
- low systematical uncertainties (cancel partially)


$\overline{\varLambda}$ / \varLambda mass peaks at $\sqrt{s}=900~{\rm GeV}$


$\overline{\Lambda}$ / Λ ratio


- ⇒ energy dependence:
 - ightharpoonup ratio overestimated by MC at $\sqrt{s}=900~{
 m GeV}$
 - lacktriangle better agreement at $\sqrt{s}=7$ TeV, but data still on the low side

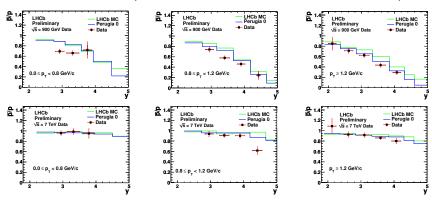
$\overline{\varLambda}$ / \varLambda ratio – LHCb magnet polarity comparison


no polarity dependence. OK!

baryon transport $\overline{\Lambda}$ / Λ

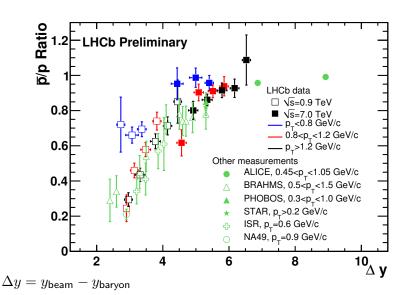
$$\Delta y = y_{\mathrm{beam}} - y_{\mathrm{baryon}}$$
 $y_{\mathrm{beam}} \approx \ln \frac{2E}{m}$

$\overline{\Lambda} \ / \ K_{\scriptscriptstyle S}^0$ ratio

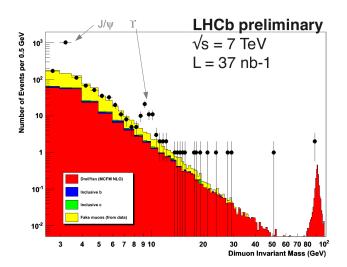


ratio underestimated by MC at both beam energies

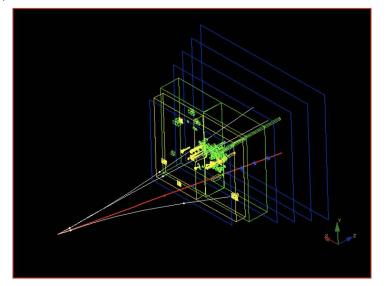
$\overline{p}/\ p$ ratio


PID calibrated on data:

- \blacktriangleright π^+ and p from $K^0_{\scriptscriptstyle S}\to\pi^+\pi^-$ and $\varLambda\to p\pi^-$
- ▶ K from $\phi \to KK$ (evaluate contamination by mis-identified K)

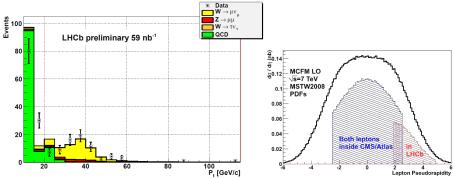

- ightharpoonup ratio overestimated at $\sqrt{s}=900~{
 m GeV}$
- good MC-data agreement at $\sqrt{s} = 7 \text{ TeV}$

baryon transport \overline{p}/p


Drell Yan p_T spectrum

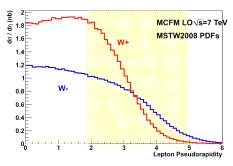
lacktriangledown require 2 isolated muons with $p_T>1~{\rm GeV}/c$

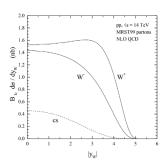
W production


$W \to \mu \nu$ event in LHCb

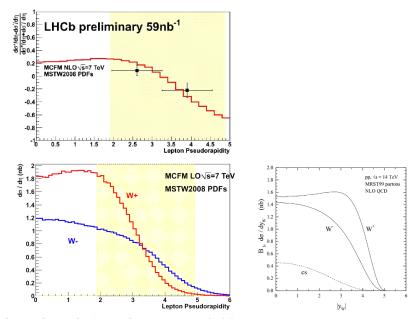
W production p_T spectrum

selection criteria (main selection requirements):


- require isolated muon
- proximity to primary vertex



analysis on higher luminosity expected soon


charge asymmetry $W \to \mu \nu$

- W only produced from q-q
- high x: valence quark dominance
- ▶ proton (uud), $W^+/W^- \approx 2$ (forward direction)
- \blacktriangleright lepton asymmetry shifted in y wrt boson asymmetry due to polarization of W

charge asymmetry $W o \mu u$

conclusions

already on first data, LHCb delivers input to QCD models:

- soft QCD
 - ▶ K_S^0 production at $\sqrt{s} = 900$ GeV harder p_T spectrum as compared to PYTHIA
 - \blacktriangleright ϕ production at $\sqrt{s}=7$ TeV production above MC in the considered kinematical range
 - ▶ $\bar{\Lambda}/\Lambda$ ratios at $\sqrt{s} = 900$ GeV lower than MC, y dependence differs
 - lacktriangle Λ/Λ ratios at $\sqrt{s}=7$ TeV slightly on the low side
 - ▶ $\overline{\Lambda}/K_S^0$ ratio at $\sqrt{s} = 900$ GeV and $\sqrt{s} = 7$ TeV: predicted baryon suppression is too high
 - $ightharpoonup \overline{p}/p$ ratio overestimated by MC at $\sqrt{s}=900$ GeV
- hard QCD
 - Drell-Yan production reasonably described by MC
 - ▶ W production fits to MC within statistics