Introduction to Cosmic Rays

Ralph Engel Karlsruhe Institute of Technology (KIT)

Direct measurement (balloons, satellites)

Cross check of model with secondary elements

Composition of cosmic rays at low energy

Galaxy and galactic magnetic fields

Galaxy and galactic magnetic fields

(Andromeda, M31)

$$R_L \simeq 1 \,\mathrm{pc} \times \left(\frac{E}{10^{15} \,\mathrm{eV}}\right) \left(\frac{\mu \mathrm{G}}{ZB}\right)$$

 $B = 3 \mu G = 30 nT$ close to Solar System

Diffusion: distance scales ~ $(time)^2$

Extragalactic sources unlikely

Air shower ground arrays

Energy / composition analysis using shower profiles

Example: event measured by Auger Collab. (ICRC 2003)

- Energy well determined
- Primary particle type: mean and fluctuations of shower depth of maximum

Success: all-particle flux

Magnetic fields: Confinement in the Galaxy (i)

Observed spectrum softer than injection spectrum

Magnetic fields: Confinement in the Galaxy (ii)

Diffusion: same behaviour for different elements at same rigidity $p/Z \sim E/Z$

Magnetic fields: Confinement in sources

Acceleration: same behaviour for different elements at same rigidity $p/Z \sim E/Z$

Exotic models for interpretation

The knee and unusual events at PeV energies

A.A.Petrukhin^a

Nuclear Physics B (Proc. Suppl.) 151 (2006) 57-60

^aExperimental Complex NEVOD, Moscow Engineering Physics Institute, Kashirskoe shosse, 31, Moscow 115409, Russia

The appearance of the knee in EAS energy spectrum in the atmosphere in PeV energy interval and observation of various types of unusual events approximately at same energies are considered as evidence for new physics. Some ideas about possible new physical processes at PeV energies are described. Perspectives to check these ideas and their consequences for experiments at higher energies are discussed.

Origin and physics of the knee

16

Area ~ 0.04 km², 252 surface detectors

Composition in Knee region (i)

Composition in Knee region (ii)

Air shower ground arrays

Energy spectrum really just a broken power law ?

Curvature in power law of flux

10⁻¹¹

10⁻²

 10^{2}

 $p_* = p/mc$

10⁰

104

10⁶

108

Magnetic field amplification, similar end values for different environments

Caprioli, Blasi, Amato, astro-ph/1007.1925

Transition to extra-galactic sources ?

Ultra-high energy: 10²⁰ eV

Need accelerator of size of Mecury's orbit to reach 10^{20} eV with current technology

Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

Acceleration time for LHC: 815 years

Source: diffuse shock acceleration?

Hillas 1984:

$$E_{\text{max}} \simeq 10^{18} \text{ eV } Z \beta \left(\frac{R}{\text{kpc}}\right) \left(\frac{B}{\mu \text{G}}\right)$$

$$10^{12}$$

$$\frac{10^{12}}{\text{Newtron stars}}$$

$$\frac{10^{12}}{\text$$

Rac VLA

Greisen-Zatsepin-Kuzmin (GZK) effect

Example: Energy loss of protons

Hadronic energy loss: stochastic process

(Achterberg 1999, Stanev et al., PRD62, 2000)

Loss length comparison: protons vs. nuclei

²⁷

Origin of flux suppression: GZK effect vs. max. energy

Southern Pierre Auger Observatory

Malargue, Argentina

Area ~3000 km², 1600 surface detectors, 24 telescopes

Shower longitudinal profile

Simulation of individual hybrid events

Procedure

- Simulation of 400 showers with reconstructed geometry
- Proton or iron primaries
- SD simulation for best long. profile
- Reconstruction of hybrid event

Results

- Muon deficit found in both proton and iron like showers
- Showers with same X_{max} show 10-15% variation of S(1000)

Example: QGSJET II, iron

Comparison of results

Results of different methods consistent

- shift of energy scale expected
- muon deficit in simulation even with shifted energy scale

But: All results depend directly or indirectly on simulation of em. component

HiRes-MIA hybrid measurement

Analysis with QGSJET98 (very similar to QGSJET01)

HiRes Fly's Eye and MIA Collabs., Phys. Rev. Lett. 84 (2000) 4276

Telescope Array: energy scale

(TA Collab., Thomson, ICHEP 2010)

- Many fundamental questions still unsolved in cosmic ray physics
- Composition measurement key ingredient, strong dependence on hadronic interaction models
- Discrepancies indicate shortcomings current models
- Data and input (theory/phenomenology) needed from colliders
- Cosmic ray data allow us to reach to higher energy
- Next talk: what can we learn from cosmic ray observations?

Composition based on mean Xmax

Verification with multimessenger data

Example: gamma-rays (neutrinos would be conclusive!)

Filaments with high mag. field (100 µG): indirect proof of hadronic particles?

IC contribution derived from X-ray data

(Berezhko et al., astro-ph/0906.3944)

Heitler model of em. shower

Muon production in hadronic showers

Primary particle proton

 π^0 decay immediately

 Π^{\pm} initiate new cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82 \dots 0.95$$

Assumptions:

- cascade stops at $E_{\text{part}} = E_{\text{dec}}$
- each hadron produces one muon

Superposition model

Proton-induced shower

$$N_{\rm max} = E_0/E_c$$

$$X_{\rm max} \sim \lambda_{\rm eff} \ln(E_0)$$

$$N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\alpha} \qquad \alpha \approx 0.9$$

Assumption: nucleus of mass A and energy E_0 corresponds to A nucleons (protons) of energy $E_n = E_0/A$

$$N_{\rm max}^A = A\left(\frac{E_0}{AE_c}\right) = N_{\rm max}$$

$$X_{\text{max}}^{A} \sim \lambda_{\text{eff}} \ln(E_0/A)$$
$$N_{\mu}^{A} = A \left(\frac{E_0}{AE_{\text{dec}}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}$$

GZK horizon and magnetic field deflection

Extragalactic magnetic field

Distribution of Galaxies

Capricornus Supercluster

> Capricornus Superclusters Void Pavo-Indus

Supercluster Centaurus Supercluster

Sculptor Superclusters Void Virgo Coma Supercluster

> Perseus-Pisces Supercluster

Horologium

Supercluster Supercluster Sextans Supercluster

Shapley Supercluster

> Ursa Major Supercluster Superclusters

> > $E > 3 \times 10^{19} eV$

Bootes

Superclysters

Bootes Void

Pisces-Cetus

Superclusters

Distribution of Galaxies

Capricornus Supercluster

> Capricornus Superclusters Void

> > Pavo-Indus Supercluster

Sculptor Void

Virgo Coma Supercluster Hydra Perseus-Pisces Supercluster

Supercluster

$E > 6 \times 10^{19} eV$

9 Columba Supercluster

Superclusters Void Shapley Supercluster

> Ursa Major Supercluster Leo Superclusters

Bootes

Sextans Supercluster

Horologium Supercluster

vww.atlasoftheuniverse.con

Pisces-Cetus

Superclusters

Example: EPOS 1.62, iron

Importance of fluctuations

