Content Introduction Dipole cascade models.

Correlations and Fluctuations in High Energy Scattering

Gösta Gustafson

Department of Theoretical Physics Lund University

Workshop on Hadron-Hadron & Cosmic-Ray Int. Trento, 29 Nov-3 Dec, 2010

Work in coll. with C. Flensburg, L. Lönnblad, and A. Ster

UNIVERSITY

Gösta Gustafson

High energy reactions:

Assumption: HE collisions driven by partonic subcollisions (cf. PYTHIA)

Small x: BFKL evolution

High parton density: fluctuations, correlations and saturation important

Observable effects:

- Multiple interactions
- Diffraction

Mult. int. more easily treated in impact parameter space

Study effects of correlations & fluctuations in a model based on BFKL evolution and saturation

Content

- 1. Double parton distributions
- 2. Diffractive excitation
- 3. Dipole cascade models
 - a) Mueller's dipole cascade
 - b) Lund dipole cascade model
- 4. Results
 - a) Correlations in double parton distributions
 - b) Diffractive excitation
- 5. Preliminary results for final states
 - a) pp collisions
 - b) Nucleus collisions
- 6. Summary

Content Introduction Dipole cascade models

1. Double parton distribution $\Gamma_{ij}(x_1, x_2, b; Q_1^2, Q_2^2)$

$$\sigma_{(A,B)}^{D} = \frac{m}{2} \sum_{i,j,k,l} \int \Gamma_{ij}(x_1, x_2, b; Q_1^2, Q_2^2) \hat{\sigma}_{ik}^{A}(x_1, x_1') \hat{\sigma}_{jl}^{B}(x_2, x_2') \\ \times \Gamma_{kl}(x_1', x_2', b; Q_1^2, Q_2^2) dx_1 dx_2 dx_1' dx_2' d^2 b$$

MC: PYTHIA, HERWIG:

$$\Gamma_{ij}(x_1, x_2, b; Q_1^2, Q_2^2) = D^i(x_1, Q_1^2) D^j(x_2, Q_2^2) F(b),$$

+ adjustment from energy conservation

$$\Rightarrow \sigma_{(A,B)}^{D} = \frac{1}{1+\delta_{AB}} \frac{\sigma_{A}^{S} \sigma_{B}^{S}}{\sigma_{\text{eff}}} \quad \text{with} \quad \sigma_{\text{eff}} = \left[\int d^{2}b(F(b))^{2}\right]^{-1}$$

Gaunt-Stirling: This violates DGLAP evolution

Propose ansatz:

$$\Gamma_{ij}(x_1, x_2, b; Q_1^2, Q_2^2) = D^{ij}(x_1, x_2; Q_1^2, Q_2^2) F_j^i(b)$$

More general: Define $F(b; x_1, x_2, Q_1^2, Q_2^2)$ by the relation $\Gamma(x_1, x_2, b; Q_1^2, Q_2^2) = D(x_1, Q_1^2) D(x_2, Q_2^2) F(b; x_1, x_2, Q_1^2, Q_2^2)$ $\Rightarrow \sigma_{\text{eff}} = \left[\int d^2 b(F(b))^2\right]^{-1}$

depends on x_1, x_2, Q_1^2 , and Q_2^2

Correlation effects

Hot spots

Smaller regions with higher parton density expected for small x and/or large Q^2 .

 $\Rightarrow \sigma_{\rm eff} = \left[\int d^2 b(F(b))^2\right]^{-1}$ is reduced and σ^D increases

But this effect is counteracted by the increase of F for more typical *b*-values.

Fluctuations

Without fluctuations *F* would be normalized to $\int F(b) d^2b = 1$

With fluctuations, but no other effects, F is normalized to

$$\int F(b) d^2 b = \frac{\langle n^2 \rangle}{\langle n \rangle^2} > 1$$
 with $n = \#$ partons

This also enhances σ^D

2. Diffractive excitation

Eikonal approximation

Diffraction and saturation more easily described in impact parameter space

Scattering driven by absorption into inelastic states i, with weights $2f_i$

Structureless projectile

Optical theorem \Rightarrow

٢

Elastic amplitude $T = 1 - e^{-F}$, with $F = \sum f_i$

$$\begin{cases} d\sigma_{tot}/d^2b \sim 2T \\ \sigma_{el}/d^2b \sim T^2 \\ \sigma_{inel}/d^2b \sim 1 - e^{-\sum 2f_i} = \sigma_{tot} - \sigma_{el} \end{cases}$$

Good – Walker

If the projectile has an internal structure, the mass eigenstates can differ from the eigenstates of diffraction

Diffractive eigenstates: Φ_n ; Eigenvalue: T_n

Mass eigenstates: $\Psi_k = \sum_n c_{kn} \Phi_n \ (\Psi_{in} = \Psi_1)$

Elastic amplitude: $\langle \Psi_1 | T | \Psi_1 \rangle = \sum c_{1n}^2 T_n = \langle T \rangle$

 $d\sigma_{el}/d^2b\sim (\sum c_{1n}^2T_n)^2=\langle T
angle^2$

Amplitude for diffractive transition to mass eigenstate Ψ_k :

$$\langle \Psi_k | T | \Psi_1 \rangle = \sum_n c_{kn} T_n c_{1n}$$

$$d\sigma_{diff} / d^2 b = \sum_k \langle \Psi_1 | T | \Psi_k \rangle \langle \Psi_k | T | \Psi_1 \rangle = \langle T^2 \rangle$$

Diffractive excitation determined by the fluctuations:

$$d\sigma_{diff ex}/d^2b = d\sigma_{diff} - d\sigma_{el} = \langle T^2 \rangle - \langle T \rangle^2$$

Proton substructure: parton cascade

Depends on energy, i.e. on Lorentz frame

Can fill a large rapidity range \Rightarrow high mass excitation possible

3. Dipole cascade models a. Mueller Dipole Model:

A color charge is always associated with an anticharge Formulation of LL BFKL in transverse coordinate space

Emission probability: $\frac{d\mathcal{P}}{dy} = \frac{\bar{\alpha}}{2\pi} d^2 \mathbf{r}_2 \frac{r_{01}^2}{r_{02}^2 r_{12}^2}$

Color screening: Suppression of large dipoles \sim suppression of small k_{\perp} in BFKL

Dipole-dipole scattering

Gluon exhange \Rightarrow Color connection projectile-target

pro

BFKL evol.: frame independent

Interaction probability: $2f_{ij} = \alpha_s^2 \ln^2 \left(\frac{r_{13}r_{24}}{r_{14}r_{23}}\right)$

targ

Largest k_{\perp} can be anywhere in the evolution

Multiple interactions \Rightarrow Dipole chains and color loops

Frame independent formalism \Rightarrow dipole loops in the evolution

Note that

Gluon emission $\sim \bar{\alpha} = \frac{N_{\rm C}}{\pi} \alpha_{\rm s}$

Gluon exchange $\sim \alpha_s$. Color suppressed \Rightarrow Also loop formation color suppressed $\sim \alpha_s$

Related to identical colors.

Quadrupole \sim recoupled dipole chains

Gluon exchange \rightarrow same effect

Gösta Gustafson

b. Lund Dipole Cascade model (Avsar–Flensburg–GG–Lönnblad)

The Lund model is a generalization of Mueller's dipole model, with the following improvements:

- Include NLL BFKL effects
- Include Nonlinear effects in evolution (loop formation)
- Include Confinement effects

MC: DIPSY (CF, LL)

Initial state wavefunctions:

 γ^* : Given by perturbative QCD. $\Psi_{T,L}(r, z; Q^2)$

proton: Dipole triangle

2 tunable parameters: proton size and Λ_{QCD}

Total and elastic cross sections

рр

["]Introduction Dipole cascade models Correlations in double parton distributions,

Lund University

ż

* 510

4. Results

a. Correlations in double parton distributions

Dipole cascade models[°] Correlations in double parton distributions Diffraction à la Good–Walker,

 $\sigma_{
m eff} =$ 30.1 mb $\sigma_{
m eff} =$ 29.4 mb $\sigma_{
m eff} =$ 25.9 mb

 $\sigma_{\rm eff}$ decreases: stronger correlations

$$\int F d^2 b = 1.10, \, 1.08, \, 1.15$$

Cf. $\sigma_{eff} \sim 15$ mb for 3jet+ γ at CDF and D0 This is sensitive to quark-gluon correlations Stronger than gluon-gluon correlations?

Fourier transform \Rightarrow

 $D(x_1, x_2, Q_1^2, Q_2^2; \vec{\Delta})$ (Blok *et al.*)

 $\vec{\Delta}$ = momentum imbalance

Spike for small $b \Rightarrow$ tail for large Δ

Can be important for multiple interactions at LHC.

Should be further studied

Correlations in double parton distributions Diffraction à la Good–Walker Preliminary final state results.

b. Diffraction à la Good–Walker (C. Flensburg-GG: JHEP 1010, 014, arXiv:1004.5502) Fluctuations in $\gamma^* p$

Correlations in double parton distributions² Diffraction à la Good-Walker Preliminary final state results.

Example
$$M_X < 8$$
 GeV, $Q^2 = 4, 14, 55$ GeV².

Correlations in double parton distributions² Diffraction à la Good–Walker Preliminary final state results.

pp: Born approximation: large fluctuations $dP/dF \approx A F^{p} e^{-aF}$

рр

Only events with a rapidity gap at y = 0, in the frame used for the calculation, are treated as diffractive.

In other frames they are classified as inelastic.

Impact parameter profile

Central collisions: $\langle T \rangle$ large \Rightarrow Fluctuations small Peripheral collisions: $\langle T \rangle$ small \Rightarrow Fluctuations small

Correlations in double parton distributions Diffraction à la Good–Walker Preliminary final state results.

Triple-Regge parameters

Traditionally fluctuations not taken into account

Reggeon parameters and couplings fitted to data

Bare pomeron

Born amplitude without saturation effects

Agrees with triple-regge form, with a single pomeron pole

$$lpha(0) = 1.21, \ lpha' = 0.2 \,\mathrm{GeV}^{-2}$$

 $g_{
hoP}(t) = (5.6 \,\mathrm{GeV}^{-1}) \,\mathrm{e}^{1.9t}, \ g_{3P}(t) = 0.31 \,\mathrm{GeV}^{-1}$

Compare with multi-regge analyses:

 $lpha(0) = 1.21, \ lpha' = 0.2 \,\mathrm{GeV}^{-2}$ $g_{\mathrm{pP}}(t) = (5.6 \,\mathrm{GeV}^{-1}) \,e^{1.9t}, \ g_{\mathrm{3P}}(t) = 0.31 \,\mathrm{GeV}^{-1}$

 Ryskin *et al.*:
 $\alpha(0) = 1.3$, $\alpha' \le 0.05 \, \text{GeV}^{-2}$

 Kaidalov *et al.*:
 $\alpha(0) = 1.12$, $\alpha' = 0.22 \, \text{GeV}^{-2}$

Note:

Fit ~ single pomeron pole (not a cut or a series of poles) g_{3P} approx. constant (*cf* LL BFKL ~ $1/\sqrt{|t|}$), Diffraction à la Good–Walker[^] Preliminary final state results Nuclei...

6. Preliminary final state results

1. Remove virtual emissions, which do not come on shell in the interaction

(preliminary results, due to technical problems in the MC)

- 2. Add final state radiation
- 3. Hadronize (no color recon.)

Note: No input structure fcns. No quarks, only gluons

No precision results should be expected

We hope to reproduce the qualitative features, and get insight into the basic mechanisms

Diffraction à la Good–Walker Preliminary final state results Nuclei

CDF 1.8 TeV

Correlations and Fluctuations 29

Gösta Gustafson

Diffraction à la Good–Walker Preliminary final state results Nuclei.

ALICE

Rapidity distribution and multiplicity frequency.

 $dN/d\eta$ varies somewhat too slowly with energy BFKL evolution \Rightarrow more activity for large $|\eta|$ than PYTHIA (Note also enhanced production of strangeness and baryons \Rightarrow hadronization modified in high density environment?) Preliminary final state results^{*} Nuclei Summary

Generalization to nucleus collisions

pO collision $\sqrt{s_{NN}} =$ 1 TeV. $dN_{ch}/d\eta$, $dE_{\perp}/d\eta$

Pb Pb collision

Calculate energy and momentum densities for initial gluons

 \Rightarrow Initial condition for hydrodynamic evolution [— $d E_T/d\eta$]

 $\sqrt{s_{NN}} = 273 \text{ GeV}$ (central)

2.76 TeV (1 central event)

Preliminary final state results Nuclei Summary

Summary

- Correlations and fluctuations studied in a model based on BFKL evolution and saturation.
- Impact parameter dependence of double parton distributions depend on x_i and Q_i².
 Peak at small b for small x and large Q²
 ⇒ larger p_⊥ imbalance in multiple subcollisions.
- Fluctuations in BFKL evolution can describe diffractive excitation in pp collisions and DIS (with no extra parameters.)
 - Reproduces triple-regge form, with simple pomeron pole.
- Preliminar results for final states.
- Generalization to nucleus collisions.