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High energy reactions:

Assumption: HE collisions driven by partonic subcollisions
(cf. PYTHIA)

Small x : BFKL evolution

High parton density:
fluctuations, correlations
and saturation important

Observable effects:
- Multiple interactions
- Diffraction

Mult. int. more easily treated in impact parameter space

Study effects of correlations & fluctuations in a model
based on BFKL evolution and saturation
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1. Double parton distribution
Γij(x1, x2, b; Q2
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MC: PYTHIA, HERWIG:
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1 , Q2

2) = Di(x1, Q2
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1+δAB

σS
AσS

B
σeff

with σeff =
[∫

d2b(F (b))2
]−1
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Gaunt–Stirling: This violates DGLAP evolution

Propose ansatz:

Γij(x1, x2, b; Q2
1 , Q2

2) = Dij(x1, x2; Q2
1 , Q2

2)F i
j (b)

More general: Define F (b; x1, x2, Q2
1 , Q2

2) by the relation

Γ(x1, x2, b; Q2
1 , Q2

2) = D(x1, Q2
1) D(x2, Q2

2) F (b; x1, x2, Q2
1 , Q2

2)

⇒ σeff =
[∫

d2b(F (b))2
]−1

depends on x1, x2, Q2
1 , and Q2

2
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Correlation effects

Hot spots
Smaller regions with higher parton density expected for small x
and/or large Q2.

⇒ σeff =
[∫

d2b(F (b))2
]−1

is reduced and σD increases

But this effect is counteracted by the increase of F for more
typical b-values.

Fluctuations
Without fluctuations F would be normalized to

∫

F (b) d2b = 1

With fluctuations, but no other effects, F is normalized to
∫

F (b) d2b = 〈n2〉
〈n〉2 > 1 with n = # partons

This also enhances σD
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2. Diffractive excitation
Eikonal approximation

Diffraction and saturation more easily described in impact
parameter space

Scattering driven by absorption into inelastic states i , with
weights 2fi

Structureless projectile

Optical theorem ⇒
Elastic amplitude T = 1 − e−F , with F =

∑

fi







dσtot/d2b ∼ 2T
σel/d2b ∼ T 2

σinel/d2b ∼ 1 − e−
P

2fi = σtot − σel

Correlations and Fluctuations 7 Gösta Gustafson Lund University



Content
Introduction

Dipole cascade models
ˇ

Good – Walker

If the projectile has an internal structure, the mass eigenstates
can differ from the eigenstates of diffraction

Diffractive eigenstates: Φn; Eigenvalue: Tn

Mass eigenstates: Ψk =
∑

n cknΦn (Ψin = Ψ1)

Elastic amplitude: 〈Ψ1|T |Ψ1〉 =
∑

c2
1nTn = 〈T 〉

dσel/d2b ∼ (
∑

c2
1nTn)

2 = 〈T 〉2

Amplitude for diffractive transition to mass eigenstate Ψk :

〈Ψk |T |Ψ1〉 =
∑

n cknTnc1n

dσdiff /d2b =
∑

k 〈Ψ1|T |Ψk〉〈Ψk |T |Ψ1〉 = 〈T 2〉
Diffractive excitation determined by the fluctuations:

dσdiff ex/d2b = dσdiff − dσel = 〈T 2〉 − 〈T 〉2
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Proton substructure: parton cascade
Depends on energy, i.e. on Lorentz frame

Can fill a large rapidity range ⇒ high mass excitation possible

y

virtual cascade inelastic int. elastic scatt. diffractive exc.

Cf. Miettinen–Pumplin (1978), Hatta et al. (2006)
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3. Dipole cascade models
a. Mueller Dipole Model:
A color charge is always associated with an anticharge

Formulation of LL BFKL in transverse coordinate space

Q

Q̄

1

0

1

0

r01

2

r12

r02

1

0

2

3

y

x

Emission probability: dP
dy = ᾱ

2π
d2r2

r2
01

r2
02 r2

12

Color screening: Suppression of large dipoles

∼ suppression of small k⊥ in BFKL
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Dipole-dipole scattering

Gluon exhange
⇒ Color connection
projectile–target

i j
2

1 3

4

proj . targ.

Interaction probability:

2fij = α2
s ln2

(

r13r24
r14r23

)

BFKL evol.:
frame independent

Largest k⊥ can be any-
where in the evolution
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Multiple interactions ⇒ Dipole chains and color loops

A

C

B
r

rapidity

Frame independent formalism ⇒ dipole loops in the evolution
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Note that

Gluon emission ∼ ᾱ = NC
π

αs

Gluon exchange ∼ αs. Color suppressed
⇒ Also loop formation color suppressed ∼ αs

Related to identical colors.

r̄ r

r r̄

Quadrupole ∼ recoupled dipole chains

Gluon exchange → same effect
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b. Lund Dipole Cascade model
(Avsar–Flensburg–GG–Lönnblad)

The Lund model is a generalization of Mueller’s dipole model,
with the following improvements:

◮ Include NLL BFKL effects
◮ Include Nonlinear effects in evolution (loop formation)
◮ Include Confinement effects

MC: DIPSY (CF, LL)

Initial state wavefunctions:

γ∗: Given by perturbative QCD. ΨT ,L(r , z; Q2)

proton: Dipole triangle

2 tunable parameters: proton size and ΛQCD
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Total and elastic cross sections

pp
σtot and σel
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γ∗p
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Satisfies geometric scaling
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4. Results

a. Correlations in double parton distributions

F (b)

Spike devel-
ops at b = 0,
for smaller x
and larger Q2

And longer
tail
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x1 = x2 = 0.03, Q2
1 = Q2

2 = 10: σeff = 30.1 mb
x1 = x2 = 0.003, Q2

1 = Q2
2 = 100: σeff = 29.4 mb

x1 = x2 = 0.0003, Q2
1 = Q2

2 = 1000: σeff = 25.9 mb

σeff decreases: stronger correlations
∫

Fd2b = 1.10, 1.08, 1.15

Cf. σeff ∼ 15 mb for 3jet+γ at CDF and D0

This is sensitive to quark-gluon correlations

Stronger than gluon-gluon correlations?
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Fourier transform ⇒
D(x1, x2, Q2

1 , Q2
2 ; ~∆) (Blok et al.)

~∆ = momentum imbalance

Spike for small b ⇒ tail for large ∆

Can be important for multiple interactions at LHC.

Should be further studied
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b. Diffraction à la Good–Walker
(C. Flensburg-GG: JHEP 1010, 014, arXiv:1004.5502)

Fluctuations in γ∗p

Prob. distrib. for
Born ampl. F =

∑

fij

dP/dF ≈ A F−p

Wide distribution

〈F 〉 small
⇒ T = 1 − e−F ≈ F

W = 220 Q2
= 14
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Example MX < 8 GeV, Q2 = 4, 14, 55 GeV2.
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pp: Born approximation: large fluctuations

dP/dF ≈ A F p e−aF

Born ampl. F W = 2 TeV Uniterized ampl. T = 1−e−F
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〈F 〉 is large: Unitarity important ⇒ fluctuations suppressed

(∼ enhanced diagrams in multi-regge formalism)

Factorization broken between DIS and pp
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pp

Only events with a rapidity gap at y = 0, in the frame used for
the calculation, are treated as diffractive.

In other frames they are classified as inelastic.

pp coll. in a frame,
where the projec-
tile is evolved Yp

rapidity units

1.8 TeV
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Impact parameter profile

Central collisions: 〈T 〉 large ⇒ Fluctuations small

Peripheral collisions: 〈T 〉 small ⇒ Fluctuations small
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Largest fluctuations when 〈T 〉 ∼ 0.5

Circular ring expanding to larger radius at higher energy
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Triple-Regge parameters

proj. gpP(0)

g3P(t)

gpP(t)
target

y1

y2

Traditionally fluctuations
not taken into account

Reggeon parameters and
couplings fitted to data
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Bare pomeron
Born amplitude without saturation effects

σtot, σel, σSD
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Agrees with triple-regge form, with a single pomeron pole

α(0) = 1.21, α′ = 0.2 GeV−2

gpP(t) = (5.6 GeV−1) e1.9t , g3P(t) = 0.31 GeV−1
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Compare with multi-regge analyses:

α(0) = 1.21, α′ = 0.2 GeV−2

gpP(t) = (5.6 GeV−1) e1.9t , g3P(t) = 0.31 GeV−1

Ryskin et al.: α(0) = 1.3, α′ ≤ 0.05 GeV−2

Kaidalov et al.: α(0) = 1.12, α′ = 0.22 GeV−2

Note:

Fit ∼ single pomeron pole (not a cut or a series of poles)

g3P approx. constant (cf LL BFKL ∼ 1/
√

|t |),
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6. Preliminary final state results

1. Remove virtual emissions,
which do not come on shell in
the interaction
(preliminary results, due to
technical problems in the MC)

2. Add final state radiation

3. Hadronize (no color recon.)

Note: No input structure fcns. No quarks, only gluons

No precision results should be expected

We hope to reproduce the qualitative features, and get
insight into the basic mechanisms
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ALICE
Rapidity distribution and multiplicity frequency.
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dN/dη varies somewhat too slowly with energy

BFKL evolution ⇒ more activity for large |η| than PYTHIA

(Note also enhanced production of strangeness and baryons

⇒ hadronization modified in high density environment?)
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Generalization to nucleus collisions

pO collision
√

sNN = 1 TeV. dNch/dη, dE⊥/dη
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Pb Pb collision

Calculate energy and momentum densities for initial gluons

⇒ Initial condition for hydrodynamic evolution [— d ET /dη]
√

sNN = 273 GeV (central) 2.76 TeV (1 central event)
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Hadron distribution if NO plasma or hydrodynamic expansion

d Nch/d η, d ET /d η (at 2.76 TeV 10,000×10,000 dipoles)
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Summary

◮ Correlations and fluctuations studied in a model based on
BFKL evolution and saturation.

◮ Impact parameter dependence of double parton
distributions depend on xi and Q2

i .
Peak at small b for small x and large Q2

⇒ larger p⊥ imbalance in multiple subcollisions.
◮ Fluctuations in BFKL evolution can describe diffractive

excitation in pp collisions and DIS (with no extra
parameters.)
Reproduces triple-regge form, with simple pomeron pole.

◮ Preliminar results for final states.
◮ Generalization to nucleus collisions.
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