Result of Telescope

 ArrayN. Sakurai
for Telescope Array collaboration

Contents

- Telescope Array
- Data analysis
- Energy spectrum using FD-mono
, Energy spectrum using FD/SD Hybrid data
, Energy spectrum using SD data
- Various analysis using SD data
- Primary composition study using FD-stereo data
- Future prospects
- Summary

Telescope Array

- The aims of TA are
- Measuring the UHE CR energy spectrum.
, Studying the primary composition of UHE CR.
- Searching the source of the ultra high energy cosmic ray.
- For these purpose, TA collaboration was forged by Members of AGASA and HiRes.
- Now, the collaboration members comes from Japan, US, Korea, Russia and China.

Telescope Array Collaboration

T Abu-Zayyad ${ }^{1}$, R Aida², M Allen ${ }^{1}$, R Azuma ${ }^{3}$, E Barcikowski ${ }^{1}$, JW Belz¹, T Benno ${ }^{4}$, DR Bergman ${ }^{1}$, SA Blake ${ }^{1}$, 0 Brusova ${ }^{1}$, R Cady ${ }^{1}$, BG Cheon ${ }^{6}$, J Chiba ${ }^{7}$, M Chikawa ${ }^{4}$, EJ Cho ${ }^{6}$, LS Cho ${ }^{8}$, WR Cho ${ }^{8}$, F Cohen ${ }^{9}$,

K Doura ${ }^{4}$, C Ebeling ${ }^{1}$, H Fujii ${ }^{10}$, T Fujii ${ }^{11}$, T Fukuda ${ }^{3}$, M Fukushima ${ }^{9}$, 22, D Gorbunov ${ }^{12}$, W Hanlon ${ }^{1}$,
K Hayashi ${ }^{3}$, Y Hayashi ${ }^{11}$, N Hayashida ${ }^{9}$, K Hibino ${ }^{13}$, K Hiyama ${ }^{9}$, K Honda², G Hughes ${ }^{5}$, ${ }^{2}$ Iguchi ${ }^{3}$, D Ikeda9, K Ikuta², SJJ Innemee ${ }^{5}$, N Inoue ${ }^{14}$, T^{2} Ishii ${ }^{2}$, R Ishimori ${ }^{3}$, D Ivanov ${ }^{5}$, S Iwamoto ${ }^{2}$, CCH Jui ${ }^{1}$, K Kadota ${ }^{15}$, F Kakimoto ${ }^{3}$, 0 Kalashev ${ }^{12}$, T Kanbe ${ }^{2}$, H Kang ${ }^{16}$, K Kasahara ${ }^{17}$, H Kawai ${ }^{18}$, S Kawakami ${ }^{11}$, S Kawana ${ }^{14}$, E Kido ${ }^{9}$, $\mathrm{BG} \mathrm{Kim}{ }^{19}$, HB Kim ${ }^{6}$, JH Kim ${ }^{6}$, JH Kim²0, A Kitsug ${ }^{9}$, K Kobayashi ${ }^{7}$, H Koers ${ }^{21}$, Y Kondo ${ }^{9}$, V Kuzmin ${ }^{12}$, YJ Kwon ${ }^{8}$, JH Lim ${ }^{16}$, SI Lim ${ }^{19}$, S Machida ${ }^{3}$, K Martens ${ }^{22}$, J Martineau ${ }^{1}$, T Matsuda ${ }^{10}$, T Matsuyama ${ }^{11}$, JN Matthews ${ }^{1}$, M Minamino ${ }^{11}$, K Miyata ${ }^{7}$, H Miyauchi ${ }^{11}$, Y Murano ${ }^{3}$, T Nakamura ${ }^{23}$, SW Nam ${ }^{19}$, T Nonaka ${ }^{9}$, S Ogio ${ }^{11}$, M Ohnishi ${ }^{9}$, H Ohoka ${ }^{9}$, T Okuda ${ }^{11}$, A Oshima ${ }^{11}$, S Ozawa ${ }^{17}$, IH Park ${ }^{19}$, D Rodriguez ${ }^{1}$, SY Roh ${ }^{20}$, G Rubtsov ${ }^{12}$, D Ryu ${ }^{20}$, H Sagawa ${ }^{9}$, N Sakurai ${ }^{11}$, LM Scott ${ }^{5}$, PD Shah ${ }^{1}$, T Shibata ${ }^{9}$, H Shimodaira ${ }^{9}$, BK Shin ${ }^{6}$, JD Smith ${ }^{1}$, P Sokolsky ${ }^{1}$, TJ Sonley ${ }^{1}$, RW Springer ${ }^{1}$, BT Stokes ${ }^{5}$, SR Stratton ${ }^{5}$,

S Suzuki ${ }^{10}$, Y Takahashi ${ }^{9}$, M Takeda ${ }^{9}$, A Taketa ${ }^{9}$, M Takita ${ }^{9}$, Y Tameda ${ }^{3}$, H Tanaka ${ }^{11}$, K Tanaka ${ }^{24}$, M Tanaka ${ }^{10}$, JR Thomas ${ }^{1}$, SB Thomas ${ }^{1}$, GB Thomson ${ }^{1}$, P Tinyakov ${ }^{12,21}$, I Tkachev ${ }^{12}$, H Tokuno ${ }^{9}$, T Tomida², R Torii ${ }^{9}$, S Troitsky ${ }^{12}$, Y Tsunesada ${ }^{3}$, Y Tsuyuguchi ${ }^{2}$, Y Uchihori ${ }^{25}$, S Udo ${ }^{13}$, H Ukai ${ }^{2}$, B Van Klaveren ${ }^{1}$, Y Wada ${ }^{14}$, M Wood ${ }^{1}$, T Yamakawa ${ }^{9}$, Y Yamakawa ${ }^{9}$, H Yamaoka ${ }^{10}$, J Yang ${ }^{19}$, S Yoshida ${ }^{18}$, H Yoshi ${ }^{26}$, Z Zundel ${ }^{1}$
> ${ }^{1}$ University of Utah, ${ }^{2}$ University of Yamanashi, ${ }^{3}$ Tokyo Institute of Technology, ${ }^{4}$ Kinki University,
> ${ }^{5}$ Rutgers University, ${ }^{6}$ Hanyang University, ${ }^{7}$ Tokyo University of Science, ${ }^{8} Y o n s e i ~ U n i v e r s i t y, ~$
> ${ }^{9}$ Institute for Cosmic Ray Research, University of Tokyo, ${ }^{10}$ Institute of Particle and Nuclear Studies, KEK,
> ${ }^{11}$ Osaka City University, ${ }^{12}$ Institute for Nuclear Research of the Russian Academy of Sciences,
> ${ }^{13}$ Kanagawa University, ${ }^{14}$ Saitama University, ${ }^{15}$ Tokyo City University, ${ }^{16}$ Pusan National University, ${ }^{17}$ Waseda University, ${ }^{18}$ Chiba University ${ }^{19}$ Ewha Womans University, ${ }^{20}$ Chungnam National University,
> ${ }^{21}$ University Libre de Bruxelles, ${ }^{22}$ University of Tokyo, ${ }^{23}$ Kochi University, ${ }^{24}$ Hiroshima City University, ${ }^{25}$ National Institute of Radiological Science, Japan, ${ }^{26}$ Ehime University

Fluorescence Detector (FD)

- 2 FD stations (BRM \& LR) are newly developed.
- 1 FD station (MD) consists of HiRes-I PMT/electronics and HiResII mirrors.
, FD operation started from Nov. 2007.

ong Ridge FD
- Particle
- Detectr

C

Mrirery Black Rock Mesa FD

Surface Detector (SD)

- 507 SDs on 1.2 km grid
- Total detection area ${ }^{\sim} 700 \mathrm{~km}^{2}$
- SD operation started from Mar. 2008.
- More than 97% detectors are available over the operation.

FD mono analysis

"HiRes-I at MD" data analyzed by HiRes-I program.
, Same electronics \& PMT but FOV of mirrors are different ($3 \mathrm{o}^{\sim} 31^{\circ}$).

- Same program, same event reduction conditions.
- Same average atmospheric model
- Same fluorescence light yield.
- Kakimoto (1996) + FLASH (2008)
- Energy threshold is ~20\% lower than HiRes-I.

FD mono data/MC comparison

Impact parameter $17.5<\log \mathrm{E}<18$

- Spectrum \& composition are previously measured ones.
- FD-MD mono data processes are identical to HiRes-I mono data analysis.
- Both of Data \& MC are analyzed by same program.

Energy spectrum (FD mono)

Hybrid data analysis

- Hybrid data = ("BRM-FD" + "LR-FD") \cap SD
- Period : 2008 May.-2009 Sep.
- Geometry reconstruction
both of SD data and FD data are used.
- Geometry is well reconstructed.
- Longitudinal shower profile fit
- Longitudinal development is determined by only FD data.
- FD energy scale is used.
, FLY : Kakimoto (1996) + FLASH(HiRes, MD-FD)

Hybrid data/MC comparison

Cosmic Ray - LHC workshop @ ECT* 2nd Dec. 2010

Energy spectrum (Hybrid data)

SD data analysis

- Data: 2008 May - 2009Feb. (1.75yr)
- 1500km² yr sr (~ 1AGASA)
- Data cuts:
- Zenith angle < 45°
, Distance from the array border is $>1200 \mathrm{~m}$
- Bad quality events.
- 6264 events remains after cuts.
- Reconstruction procedure :
- Time fit for geometry reconstruction.
- Lateral distribution fit to obtain the signal size at 800 m from shower axis (S800).

SD typical event example

2008/Jun/25-19:45:52.588670 UTC

Geometry Fit (modified Linsley)

$$
\eta=(3.97 \pm 0.13)-(1.79 \pm 0.62)(\sec \theta-1)
$$

- S(800): Primary Energy
- Zenith attenuation by MC (not by CIC).
800m
Cosmic Ray - LHC workshop @ ECT* 2nd Dec. 2010

SD data/MC comparisons

- Spectrum \& composition are previously measured ones.
- COSIKA/QGSJet-II is used.

- Both of Data \& MC are analyzed by same program.

TA energy scale (FD vs. SD)

- Energy scale is determined experimentally by FD.
- Set SD energy scale to FD energy scale using wellreconstructed events seen by both detectors:
- 27\% renormalization.
- Systematic error is
obtained as ~19\% from "hybrid data analysis".

TA SD Spectrum

Significance of suppression

- Assuming no suppression and extend the broken power low fit beyond the cut off.
- \# of events in $\log _{10} \mathrm{E}$ bins after $10^{19.8} \mathrm{eV}$.

$$
\begin{aligned}
& \text { P Expected: } 18.4 \text { events } \\
& \text { o Observed : } 5 \text { events } \\
& P=\sum_{i=0}^{5} \operatorname{Poisson}(\mu=18.4 ; i)=2.41 \times 10^{-4} \\
&(3.5 \sigma)
\end{aligned}
$$

TA CR energy spectrum

Spectrum comparison

Skymap \& autocorrelation (E>40Eevb

Correlation to AGNs

UHECR map from LSS

- Galaxy catalogue : 2Mass Extended Sources (XSCz) - m<12.5, 5 < D < 250 [Mpc]
- Propagation : Interaction with CMB, 4π dilution - Assume same CR luminosity - Injection : photon, E-2.2

Skymap : LSS correlation

Hypothesis test

RSESt

Incompatible with LSS correlation hypothesis for small smearing angle

UHE photon limit from SD data

- Photon showers
, Deeply penetrated
- Large curvature at the shower front.

Event select conditions

, $\mathrm{E} \gamma>10^{19} \mathrm{eV}$

- Zenith angle : $45^{\circ}<\theta<60^{\circ}$
- P / γ separation by MC studies.
, Exposure : 158 [km² yr sr]
- F $\gamma<3.3 \times 10^{-2}\left[\mathrm{~km}^{-2} \mathrm{yr}^{-1} \mathrm{sr}^{-1}\right]$ (95\% CL)

FD Stereo: Mass composition

- Measure $x_{\text {max }}$ for BRM/LR FD stereo events
- Apply strict quality cuts in order to improve $\mathrm{x}_{\text {max }}$ resolution
- Shower simulation
- CORSIKA with QGSJET01, QGSJET-II, SIBYLL
, Primary ; proton/iron
- Apply exactly the same procedure as with the data

Data/MC Comparisons

Impact parameter [km]

BRM

Azimuth angle [deg]

$X_{\max }$ Data/MC comparison

$\chi 2 /$ dof of each models
QGSJET-II \quad QGSJET-01

Proton	1.44	1.06	1.63

Iron
55.54
56.67
85.71

Energy averaged Xmax

Preliminary result is consistent with proton hypothesis.

Near future prospects

- New calibration tool for FD (Electron light source) is installed and start shooting.
- Hybrid trigger is installed on Feb. 2010
, SD array can be triggered by FD trigger too.
, Energy threshold of hybrid data should become lower.
- Low energy extension is planed.
- Very preliminary study of TA-phase II

Electron Light Source (LINAC)

TA

Electron Light Source @ BRM

Electron Light Source (40ft container)
Control Room (20ft container)
Water Cooling Unit (20ft container)
75kW Diesel Generator and Tank (8ft x 16ft)

ELS in desert (Feb. 2010)

ELS First Light!!

- First beam shot into the sky on Sep. 2010.
- Absolutely calibrated monoenergy (40 MeV) e^{-}beam.
- Automatically takes into account fluorescence yield (λ) and detector efficiencies.
- Data analysis is now going on.

TA Low energy Extension (TALE)

$4^{\text {th }}$ Fluorescence Station -6 km separation
" 24 telescopes $\left(3-31^{\circ}\right.$ elevation)

- 15 large area Tower telescopes (31-73 ${ }^{8}$ elevation)
Infill scintillator array 111 ($3 \mathrm{~m}^{2} / \mathrm{ea}$) detectors at 400 m spacing
Graded muon array - 25 ($12 \mathrm{~m}^{2}$ /ea) detectors, buried 3 m

Summary

- Operation of TA is quite stable.
- Preliminary results are shown:
- FD-mono result is consistent with HiRes.
- FD-SD hybrid result is also consistent with Hires.
, Shape of energy spectrum from SD data also shows the suppression above $10^{19.75} \mathrm{eV}$.
, SD energy is scaled to FD energy scale.
- Observed Xmax is consistent with the proton dominant case.
- Arrival direction
- No correlation with known sources.
, No significant clusters
- More TA results are coming soon.

