

Result of Telescope Array

N. Sakurai for Telescope Array collaboration

Contents

- Telescope Array
- Data analysis
 - Energy spectrum using FD-mono
 - Energy spectrum using FD/SD Hybrid data
 - Energy spectrum using SD data
 - Various analysis using SD data
 - Primary composition study using FD-stereo data
- Future prospects
- Summary

Telescope Array

- The aims of TA are :
 - Measuring the UHE CR energy spectrum.
 - Studying the primary composition of UHE CR.
 - Searching the source of the ultra high energy cosmic ray.
- For these purpose, TA collaboration was forged by Members of AGASA and HiRes.
- Now, the collaboration members comes from Japan, US, Korea, Russia and China.

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹. K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai¹¹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University, ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University

Fluorescence Detector (FD)

lack Rock Mesa FD

- 2 FD stations (BRM & LR) are newly developed.
- 1 FD station (MD) consists of HiRes-I PMT/electronics and HiRes-II mirrors.
- FD operation started from Nov. 2007.

■ Battery of Telescopes ■ Particle Detect

Long Ridge FD

Communications

35km

Middle Drum FD

Cosmic Ray – LHC workshop @ ECT* 2nd Dec. 2010

BRM & LR type FD

Surface Detector (SD)

- ▶ 507 SDs on 1.2 km grid
- Total detection area ~700 km²
- ▶ SD operation started from Mar. 2008.
- More than 97% detectors are available over the operation.

- "HiRes-I at MD" data analyzed by HiRes-I program.
 - > Same electronics & PMT but FOV of mirrors are different (3 ° $^{\circ}$ 31°).
 - Same program, same event reduction conditions.
 - Same average atmospheric model
 - Same fluorescence light yield.
 - ▶ Kakimoto(1996) + FLASH(2008)
 - ▶ Energy threshold is ~20% lower than HiRes-I.

- Spectrum & composition are previously measured ones.
- FD-MD mono data processes are identical to HiRes-I mono data analysis.
- Both of Data & MC are analyzed by same program.

Hybrid data analysis

- ▶ Hybrid data = ("BRM-FD" + "LR-FD") \cap SD
- ▶ Period : 2008 May.-2009 Sep.
- Geometry reconstruction
 - Both of SD data and FD data are used.
 - Geometry is well reconstructed.
- Longitudinal shower profile fit
 - Longitudinal development is determined by only FD data.
 - > FD energy scale is used.
 - FLY : Kakimoto (1996) + FLASH(HiRes, MD-FD)

BR station

Hybrid data/MC comparison

11

D

Systematic

error

12%

10%

11%

5%

3%

19%

Energy spectrum (Hybrid data)

Systematic errors

SD data analysis

- ▶ Data: 2008 May 2009Feb. (1.75yr)
 - \blacktriangleright 1500km² yr sr (~ 1AGASA)
- Data cuts:
 - ▶ Zenith angle < 45°
 - > Distance from the array border is >1200m
 - Bad quality events.
 - ▶ 6264 events remains after cuts.
- Reconstruction procedure :
 - Time fit for geometry reconstruction.
 - Lateral distribution fit to obtain the signal size at 800m from shower axis (S800).

SD typical event example

SD data/MC comparisons

- Spectrum & composition are previously measured ones.
- COSIKA/QGSJet-II is used.
- Both of Data & MC are analyzed by same program.

TA energy scale (FD vs. SD)

- Energy scale is determined experimentally by FD.
- Set SD energy scale to FD energy scale using wellreconstructed events seen by both detectors:
- 27% renormalization.
 - Systematic error is obtained as ~19% from "hybrid data analysis".

Significance of suppression

- Assuming no suppression and extend the broken power low fit beyond the cut off.
- # of events in log₁₀E bins after 10^{19.8}eV.
 - Expected : 18.4 events
 - Observed : 5 events

$$P = \sum_{i=0}^{5} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4}$$
(3.5 σ)

Spectrum comparison

Skymap & autocorrelation (E>40EeV)

Correlation to AGNs

UHECR map from LSS

- Galaxy catalogue : 2Mass Extended Sources (XSCz)
 m<12.5, 5 < D < 250 [Mpc]
- \blacktriangleright Propagation : Interaction with CMB, 4π dilution
 - Assume same CR luminosity
 - ▶ Injection : photon, E^{-2.2}

Skymap : LSS correlation

Hypothesis test

UHE photon limit from SD data

Photon showers

- Deeply penetrated
- Large curvature at the shower front.

Event select conditions

- ► Eγ >10¹⁹eV
- \blacktriangleright Zenith angle : 45° < θ < 60°
- \blacktriangleright P/ γ separation by MC studies.
- Exposure : 158 [km² yr sr]
- Fγ < 3.3 x 10⁻² [km⁻² yr⁻¹ sr⁻¹] (95% CL)

FD Stereo: Mass composition

- Measure x_{max} for BRM/LR FD stereo events
- Apply strict quality cuts in order to improve x_{max} resolution
- Shower simulation
 - ► CORSIKA with QGSJET01, QGSJET-II, SIBYLL
 - Primary ; proton/iron
- Apply exactly the same procedure as with the data

Data/MC Comparisons

with proton hypothesis.

- New calibration tool for FD (Electron light source) is installed and start shooting.
- Hybrid trigger is installed on Feb. 2010
 - > SD array can be triggered by FD trigger too.
 - Energy threshold of hybrid data should become lower.
- Low energy extension is planed.
- Very preliminary study of TA-phase II

Electron Light Source (LINAC)

TA Electron Light Source @ BRM

ELS in desert (Feb. 2010)

ELS First Light!!

- First beam shot into the sky on Sep. 2010.
- Absolutely calibrated monoenergy (40MeV) e⁻ beam.
- Automatically takes into account fluorescence yield (λ) and detector efficiencies.
- Data analysis is now going on.

TA Low energy Extension (TALE)

Purpose is :

To lower the trigger threshold of TA to ~3x10¹⁶eV for the measurements between galactic and extra-galactic regions.

4th Fluorescence Station - 6 km separation

- 24 telescopes (3-31° elevation)
 "ring 1 & 2"
- 15 large area Tower telescopes (31-73° elevation)

Infill scintillator array 111 (3m²/ea) detectors at 400 m spacing

Graded muon array – 25 (12m² /ea) detectors, buried 3 m $\,$

Summary

- Operation of TA is quite stable.
- Preliminary results are shown:
 - > FD-mono result is consistent with HiRes.
 - ▶ FD-SD hybrid result is also consistent with Hires.
 - Shape of energy spectrum from SD data also shows the suppression above 10^{19.75}eV.
 - > SD energy is scaled to FD energy scale.
 - Observed Xmax is consistent with the proton dominant case.
 - Arrival direction
 - No correlation with known sources.
 - No significant clusters
- More TA results are coming soon.