Pierre Auger Observatory

studying the universe's highest energy particles

Results from the Pierre Auger Observatory

L. Cazon, for the Pierre Auger Collaboration LIP, Portugal

L. Cazón

UHECRs

Very Interesting region

Galactic and extragalactig B fields bend the CR trajectories.

At the highest energies, UHECR point back to the sources.

GZK Horizons: Only sources within 100 Mpc will reach us. Anisotropies are expected.

Latitude 35 S – Longitude 69 W 1400m a.s.l. X=870 g cm² Data taking since 2004 Installation completed in 2008

The Pierre Auger Observatory

Surface detectors

1600 Cherenkov stations spaced 1.5 km
Area of 3000 km²
100% duty cycle
Provides Large Statistics

Fluorescence detectors

4 building with 6 telescopes each Telescope f.o.v. 30 x 30 deg ~10% duty cycle Provides High Accuracy

SD detectors

Water Cerenkov Detectors give signal proportional to their track lengh in water Difficult to separate different particle types. Some indirect methods

FD detectors

shutters filters + corrector ring camera electronics crate

20 x 22 pixels 440 Photonis XP3062 Pixel f.o.v. = 1.5 x 1.5 deg

Collect Fluorescence light emited by the shower. Mainly the central region of the EM cascade.

Hybrid Detector: Large and accurate

Resolution SD & FD

The systematic uncertainties on the energy scale E_{FD} sum up to 22%.The largest uncertainties are given by the **absolute fluorescence yield** (14%), the **absolute calibration** of the fluorescence telescopes (9%)and the **uncertainty due to the reconstruction** method of the longitudinal shower profile (10%).

Energy Calibration of SD with FD

Calibration does not depend on hadronic interaction models Systematical error 22% energy resolution 17%

Energy Spectrum

Auger data shows a flux supression at the highest energies

Cutoff significant with >20 sigma

This feature is compatible with:

GZK

Sources running out of power

It combines FD and SD spectrum.

L. Cazón

Spectrum comparison

PLB 685 (2010) 239

In agreement with energy scale systematics

change on composition around the ankle.

Comparison with MC

Data show either a change on composition towards heavier nucei or a change in the hadronic models

Correlation with AGN

(z<0.018, alpha=3.1 deg, E>57 EeV)

12/15 events correlated in the exploratory scan, 3.2 expected. P<1E-8 Difficult to estimate real probability, thus confirmation required with an independent data set.

> VCV catalogue is not *complete*: over/undersampled across the sky

A correlation with the AGNs does not necessarily mean that AGNs are the sources!!! AGNs act as tracers of the regions where the sources are.

Prescription was set. 8/13 events found to correlate.

- Null hypothesis (Isotropy of UHECR) rejected at 99% CL
- Large correlation (~70%) with extragalactic matter (traced by AGN)

Angular resolution ~1 deg

Science 318:938-943,2007

Update

69 events observed (up to 31.12.2009; 20370 km² sr y) 14.5 correlations expected if isotropy. 29 observed.

At 3.8 Mpc distance, Cen A is the closest AGN. Obvious source candidate.

Astroparticle Physics 34 (2010) 314–326

Other catalogs

Smoothed maps

Comparisons with flux limited (unbiased) catalogs show that there **are multiple astrophysical models** of anisotropy arising from the distribution of matter in the nearby universe which are **fully consistent** with the observed distribution of arrival directions.

L. Cazón

Neutrinos

L. Cazón

Neutrino Limits

L. Cazón

Photon limits

Number of muons

Muon jump

L. Cazón

$$\begin{split} S_{\rm MC}(E,\theta,< X_{\rm max}>) &= S_{\rm EM}(E,\theta,DX) \\ &+ N_{\mu}^{\rm rel} S_{\mu}^{\rm QGSII,p}(10^{19}\,{\rm eV},\theta,DX) \end{split}$$

Universality

Number of muons

It also implies an energy scaling (different from FD) $N_{\mu}^{\text{rel}}(10 \text{ EeV}) = 1.53^{+0.09}_{-0.07} \text{ (stat.)}^{+0.21}_{-0.11} \text{ (syst.)}.$ $E' = 1.26^{+0.05}_{-0.04} \text{ (syst.)} \times E_{FD}$

L. Cazón

Conclusions

- Flux suppression of UHECR unequivocally established
 - GZK? Sources running out of power?
- UHECR anisotropy at 99% CL
 - Light primaries? Heavy primaries with weak B? Sources closeby?
- Composition: intriguing results
 - Heavier? Failing models? Cross sections?
- Top down models disfavored

ections? Isotopy Anotopy

Acceptance

CIC Method

Unbiased reconstruction of X_{max}

- Ex: X_{max} must be in the field of view to be reconstructed. This could introduce a bias, for ex. by selecting deeper showers close to detector
- <u>Auger approach</u>: devise selection criteria which produce an unbiased X_{max} distribution

Monte Carlo Check

Lines corresponds to simulation input to the full detector MC: reconstructed MC data provide unbiased estimate of $<X_{max}>$ and RMS(X_{max})

Resolution SD & FD

The systematic uncertainties on the energy scale E_{FD} sum up to 22%.The largest uncertainties are given by the **absolute fluorescence yield** (14%), the **absolute calibration** of the fluorescence telescopes (9%)and the **uncertainty due to the reconstruction** method of the longitudinal shower profile (10%).

