

#### Ralf Ulrich

Pennsylvania State University

#### ECT\* Trento, Nov 2010

# Connecting High Energy Particle Physics with Cosmic Rays



Ralf Ulrich

### Cosmic Ray Energy Scale











#### **Glauber Formalism**



 $a_i(s, b_i) = (1 + \rho(s)) \frac{\sigma_{\text{tot}}^{\text{pp}}(s)}{4\pi B_{\text{el}}(s)} e^{-\frac{1}{2}\vec{b_i}^2/B_{\text{el}}(s)}$ 

### The Slope/Proton-Proton Cross Section Plane



 $\rightarrow$  Additional uncertainties due to conversion

### Proton-Proton Cross Section from Cosmic Ray Data





#### Resulting Proton-Air Cross Section



#### The Extrapolation to Cosmic Ray Energies



### The Extrapolation to Cosmic Ray Energies



#### Extensive Air Showers



















# Principle of $N_{\rm e}$ – $N_{\mu}$ Technique

 $\rightarrow$  Attenuation of shower cascades in the atmosphere



experimental results from: Baltrusaitis et al. (Fly's eye, 1984), Knurenko et al. (Yakutsk, 1999), Belov et al. (HiRes, 2006), Honda et al. (1993), Hara et al. (1999), Aglietta et al. (1999), ...

# Principle of $N_{\rm e}$ – $N_{\mu}$ Technique

 $\rightarrow$  Attenuation of shower cascades in the atmosphere



experimental results from: Baltrusaitis et al. (Fly's eye, 1984), Knurenko et al. (Yakutsk, 1999), Belov et al. (HiRes, 2006), Honda et al. (1993), Hara et al. (1999), Aglietta et al. (1999), ...











$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}X_{\mathrm{max}}^{\mathrm{rec}}} = \int \mathrm{d}X_1 \int \mathrm{d}\Delta X_1 \ \frac{\mathrm{e}^{-X_1/\lambda_{\mathrm{int}}}}{\lambda_{\mathrm{int}}} \ P_1\big(\Delta X_1 \,|\, X_1\big)$$



$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}X_{\max}^{\mathrm{rec}}} = \int \mathrm{d}X_1 \int \mathrm{d}\Delta X_1 \ \frac{\mathrm{e}^{-X_1/\lambda_{\mathrm{int}}}}{\lambda_{\mathrm{int}}} \ P_1(\Delta X_1 \,|\, X_1) \ P_{\mathrm{res}}^{\mathrm{S}}(X_{\max}^{\mathrm{rec}} \,|\, X_{\max})$$









#### Model Dependence of $\Delta X_1$



 $\Rightarrow$  Important to understand and quantify model dependence !

#### Model Dependence of $\Delta X_2$ and Muon Numbers



 $\Rightarrow$  Model dependence more pronounced due to muon numbers

#### k-Factors

#### Limitation of the analysis to the tails at large grammages:

$$rac{1}{N} rac{\mathrm{d}N}{\mathrm{d}X_{\mathrm{obs}}} \propto \mathrm{e}^{-X_{\mathrm{obs}}/\Lambda_{\mathrm{obs}}}$$

and 
$$\Lambda_{\rm obs} = k \lambda_{\rm p-air}$$





#### Primary Cosmic Ray Mass composition

### Primary Cosmic Ray Photons



Fortunately: Photon limits down to < 1%

### Primary Cosmic Ray Helium



 $(at 10^{19} \, eV)$ 

### Primary Cosmic Ray CNO



(at  $10^{19} \,\mathrm{eV}$ )

### Primary Cosmic Ray Iron



(at  $10^{19} \,\mathrm{eV}$ )

# Auger Shower Fluctuations $\mathsf{RMS}(X_{\max})$



Assume that all fluctuations in  $X_{\max}$  are directly coming from  $X_1$ 

Assume that all fluctuations in  $X_{\text{max}}$  are directly coming from  $X_1$ 



Assume that all fluctuations in  $X_{\text{max}}$  are directly coming from  $X_1$ 



Assume that all fluctuations in  $X_{\text{max}}$  are directly coming from  $X_1$ 



$$\lambda_{\text{int}} = \sigma(X_1) = \sqrt{\sigma(X_{\text{max}})^2 - \sigma(EAS)^2}$$





### Cross Section Limit from Auger RMS Data



(Auger  $X_{\rm max}$ -data from PRD2010, 90 % C.L.)

### Cross Section Limit from Auger RMS Data



(Auger  $X_{\rm max}$ -data from PRD2010, 90 % C.L.)

Air shower fluctuations are sensitive to cross sections

Precise measurements extremely challenging

Most critical at the highest energies:

- Primary composition
- Model dependence

LHC has potential to drastically reduce existing uncertainties in air shower interpretation

The big potential of cosmic rays is the energy region beyond the LHC: **QCD and/or new physics.** 

