Access system and radiation monitors session (session 5)

Topics and subjects discussed <u>Main issues</u>

Magali Gruwé and Tomasz Ladzinski

5th February 2010

Program

What went wrong with the access system and procedures?What would we wish to change?What are the current issues?

How can/will these issues be addressed? What are the consequences for the access system?

What else may have an (indirect) impact on availability of LHC? Radiation monitors

5th February 2010

- Laurette Ponce (BE/OP):
 - "How did the LHC access system perform in 2009?"
- Julie Coupard (EN/MEF):
 - "How should the access system be operated while LHC is not in beam operation?"
- Marc Tavlet (BE DSO to be):
 - "Is there a need for re-sectorization and/or additional interlocks?"
- Rui Nunes (GS/ASE):
 - "Impact of safety related requirements and evolutions on LASS and LACS"
- > Timo Hakulinen (GS/ASE):
 - "How to achieve satisfactory performances of the access system: stability, efficiency, operation, fluidity?"
- Doris Forkel-Wirth (DGS/RP):
 - "Arcon/Ramses: current status and operational risks"

Layout

- > Organizational issues
- Sectorization: Justification and implications
- Access system performance
- How to improve access fluidity
- > MAD
- Radiation monitors

Access organization: responsibilities

	Machine Status	Schedule Steps	Planning	Coordination
	TECHNICAL STOP	Technical Stop	EN/MEF	EN/MEF
Planning and coordination	SHUTDOWN	Safety	EN/MEF	EN/MEF
		Activities		
		Preparation for		
		commissioning		
		Patrols		
	COMMISSIONING	PoweringTests - phase 1	EN/MEF (general overview) BE/OP (in detail)	BE/OP
		PoweringTests - phase 2		
	OPERATION	Preparation for BO	BE/OP	BE/OP
		Beam Operation		

	Machine Status	Schedule Steps	DSO	TSO / Site coordinators	Safety coordinators
Safety coordination	TECHNICAL STOP	Technical Stop	BE	EN/MEF	YES
	SHUTDOWN	Safety	EN	EN/MEF	YES
		Activities			
		Preparation for commissioning Patrols			
	COMMISSIONING	Powering Tests - phase 1	BE	EN/MEF	YES
		Powering Tests - phase 2			
	OPERATION	Preparation for BO	BE	EN/MEF	1
		Beam Operation			

5th February 2010

- Introduction of the AET (Avis d'Exécution de Travaux):
 - To be put in place before next shutdown
 - A streamlined ADI + AOC + ...
 - One single document including links to VIC, DIMR, locking of equipment, hot work permit, etc... (as needed)
 - Including specific list of people who will intervene, BUT: list that could be edited even after approval of the document

Machine Status	Schedule Steps	Access mode	Access console	Patrol Leaders
TECHNICAL STOP	Technical Stop	RESTRICTED	BE/OP	EN/MEF & BE/OP*
SHUTDOWN	Safety		1	1
	Activities	GENERAL		
	Preparation for			
	commissioning			
	Patrols	PATROL	BE/OP	EN/MEF
COMMISSIONING	Powering Tests - phase 1	RESTRICTED		EN/MEF & BE/OP*
	Powering Tests - phase 2	CLOSED	BE/UF	
OPERATION	Preparation for BO	RESTRICTED	REIOP	EN/MEF & BE/OP*
		CLOSED		
	Beam Operation	CLOSED	1	I I

➢ BE/OP to give access...

 Do we need more people qualified/habilitated to give access while not in Operation?

M. Tavlet

- <u>Current sectorization fulfills the safety functions for which it</u> <u>has been designed</u>: protect people from ionizing radiation
 But:
 - No opening of the inter-site doors when in RESTRICTED access mode

Heavy constraints for people who need to intervene on site

- Access sectorization as we know it:
 - Does not match the newly discovered needs of hardware commissioning: strong access restrictions during powering Phase II
- Access system now also used to protect personnel from the risk of major Helium release without having been redesigned
 - Need to re-adjust ventilation sectorization to access sectorization
 - Should it include other interlocks?

5th February 2010

During shutdown and hardware commissioning phase circulation through inter-site doors is an issue:

Solution?

- Go to general mode?
- BUT:
 - Loose patrol: issue for the localization of people
 - Some areas will <u>soon</u> remain in restricted or closed mode (for radiation reasons)

Access restrictions in powering Phase II

M. Tavlet

Example:

How to address the issue?

- Add more access points? Any useful/desirable?
- Long term need?
- Satisfactory for safety? Risk analysis required!

5th February 2010

Access versus ventilation sectorization

R. Nunes and M. Tavlet

Need to re-adjust ventilation sectorization to access sectorization

5th February 2010

Interlocks (I)

L. Ponce and M. Tavlet

Should the LASS have a new role, i.e. protect people from other risks than radiation?

• Interlock cold magnets power converters with LASS?

Currently software interlock (Laurette's interlock)

LASS-Power Converters Interlock

Principle:

- In addition to the existing procedure
- Prevents powering above the Phase I current limit when people are in the zone
- Stops the Power Converters of the relevant area when people enter a zone
- Implementation:
 - Uses the Software Interlock System
 - To generate the logic (between the access conditions and the current read in the Power Converters)
 - And to send commands to the power converters via the PIC
 - Action: in case conditions are not met:
 - A global REMOVE Power Converter permit of the relevant sector is sent... causing a Slow Power Abort
- Issue: Long chain of different software modules to connect the signals

Question: Move towards a HW link between the LASS signals and the Power Interlock Controller for a long term solution?

Interlocks (II)

R. Nunes and M. Tavlet

Should the LASS have a new role, i.e. protect people from other risks than radiation?

• Interlock cold magnets power converters with LASS?

- Currently software interlock (Laurette's interlock)
- Needs further investigation
 - Is there a real need for this interlock (in the long term?)
- Needs risk analysis
- New interlock for fresh air supply?
- Interlock ventilation doors (new over pressure doors) with LASS?

Access system performance

> LACS:

- Electro-mechanical problems on MAD, PAD, doors:
 - Impact in 2009:
 - Mainly a problem during HWC period, after a long shutdown
 - Most problems solved
- Key distributors:
 - Impact in 2009:
 - Blocking possibility to switch back from access mode to beam mode
 - Currently: much improved situation but still some mechanical problems
- Simultaneous opening of both PAD doors: patrol drop
 - New software implemented just on time for beam operation
 - But still occasional patrol drops
- LASS:
 - Only few changes since 2008, validated by the successful DSO tests
 - Connection with EIS-beam to be revisited to allow testing flexibility

5th February 2010

Access system performance: Statistics (I)

T. Hakulinen

> August 1st, 2009 till January 23rd, 2010:

- Total accesses: 181893 (average 1033 / day)
- Accesses in Restricted access mode: 33676 (average 191 / day)

- **Busiest day** for operators: January 14th, 2010:
 - Accesses in Restricted access mode: 670 keys taken

5th February 2010

Access system performances: Statistics (II

T. Hakulinen

User waiting times from call to operators to access:

- Subjective estimates based on experience
- Still needs a proper distribution for analysis
- Best case: < 1 min (no rush, ADI ok, system ok)
- Normal: 1 5 min (normal operator load)
- Worst case: 30 min ∞ (big rush, multiple access points at the same time, technical problems)
- Normal procedure:
 - 1: user calls and gives ADI 2: operator checks ADI in EDH 3: operator gives key to user – 4: user enters zone
 - Repeat until all users passed
- Experienced operator performance: ~1 min / call

Technical improvements and bug fixes:

- Correction of persistent software bugs and new ergonomics of the console windows
- Solving network problems (IT issue)
- Biometry on badge (to avoid dependence on network)

Change of RESTRICTED access procedure:

• Allowing multiple key distribution for a group entering together, i.e. separating the safety token delivery from the PAD entrance cycle.

Organization and technical change:

- Additional filter (valid AET) applied on the access requests:
 - Access request not treated if no valid AET

5th February 2010

Detection of personnel in <u>Material</u> Access Devices:

ΜΑΓ

- Ongoing issue since 2008
- Improvements in place. BUT:
- Sensitivity versus rate of false detections is an issue
- At the limit of what is possible with the approach taken. Pending actions:
 - Making the personnel detection process fail-safe
 - Fine-tuning (but is it really possible any further?) and acceptance
 - Technological redundancy...
- Change strategy?
 - Remote human video control on demand / compensatory measures (guards on sites)
 - Explore different areas of technology (redundant system)

Radiation monitors

RAMSES system for LHC: proven reliable

- Decentralized system and autonomous (internal battery)
 - Detector-alarm units operate autonomously: continues to operate even if the rest of RAMSES fails
- Areas well covered with monitor stations
 - In case of failure: single channel fails: radiation monitoring ensured by remaining channels

ARCON system for LHC injectors:

- In case of failure: several channels fail: whole area without radiation monitoring!
- Major issue: spares missing!
- Operational risk: faulty ARCON equipment: beam stop for 1-3 days
- To be phased out and replaced by RAMSES:
 - First phase (RAMSES-light, for the LHC injectors) before end of next shutdown

No problem* with personnel safety but issues with availability of the LHC

> LACS:

- Ongoing issues
- Improvements expected (for fluidity)
- Safety issues:
 - *Ongoing (never ending?) MAD issue
 - Working group to be started to address:
 - Possible new sectorization (needs and risk analysis)
 - Possible additional interlocks (needs and risk analysis)
- Operational risks:
 - ARCON to be phased out