

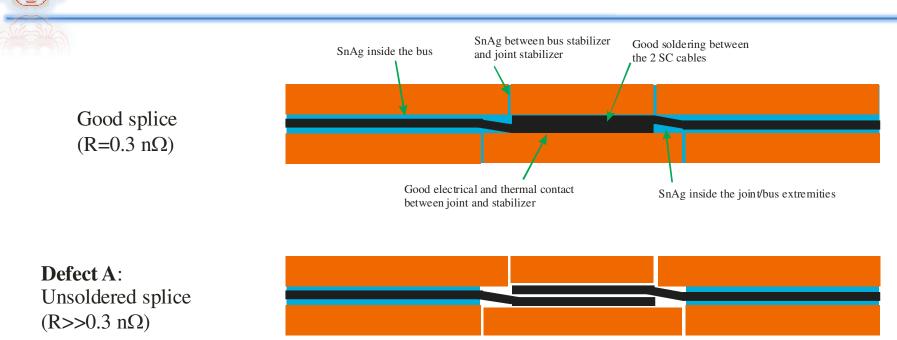
LHC Performance Workshop - Chamonix, 25-29 January, 2010

Summary Session 2 - Magnets and Splices Consolidation Shutdown 2010/2011

Francesco Bertinelli, Herve Prin - TE/MSC CERN Main Auditorium, 5 February, 2010 (15 minutes)

A "reshuffling of presentations" with bias towards "hotter" topics,

> apologies to some speakers ...

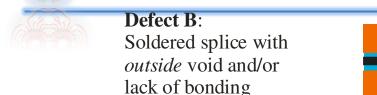


6 presentations

Overview of all superconducting splices in the LHC (20') Nuria Catalan Lasheras TE/MPE Minimum requirements for 13 kA splices (25') Arjan Verweij TE/MPE Status of splices in 13 kA circuits (25') Paolo Fessia TE/MSC Status of splices in 6 kA circuits (25') Jean-Philippe Tock TE/MSC Scenarios for consolidations intervention (20') Francesco Bertinelli TE/MSC Dipoles retraining for 7 TeV

(20') Ezio Todesco TE/MSC

13 kA interconnection splices


Defect A is very likely to be found using the monitoring feature of the nQDS system, which should reveal all bad splices with a resistance larger than a few n Ω .

Additionally, the sub mV detection threshold on the bus segments will trigger before the resistive dissipation will cause the SC-to-normal transition followed by a thermal runaway.

Defect A is mechanically weak (even if it has a resistance of a few n Ω), and running the machine with such a defect presents a serious risk!!! \Rightarrow see M. Koratzinos, P. Fessia

A. Verweij

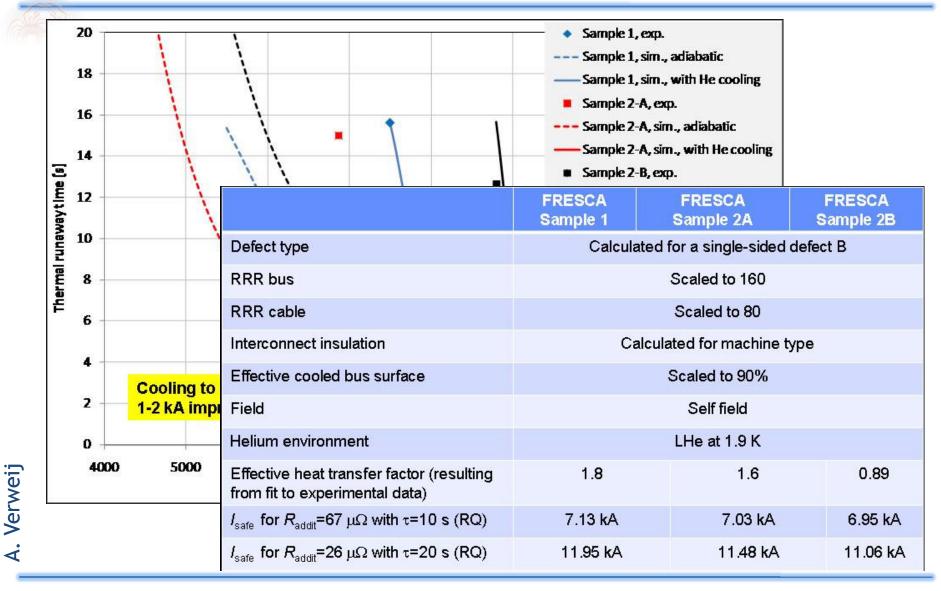
Modelling of splice defects

NSBC (Non-Stabilised Bus Cable)

Defect C: Badly soldered splice (R>0.3 n Ω) with *inside* void and/or lack of bonding

Defect D:

Splice with void and/or lack of bonding and small amount of SnAg in vertical gap



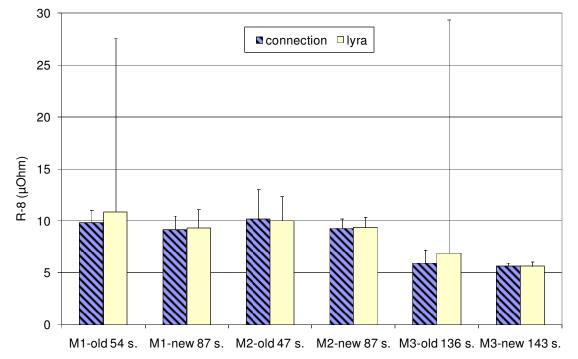
- Defects B, C, and D can be present on 1 or 2 sides of the joint.
- Single sided defects B and C are the worst case scenarios, assuming that the defect size is estimated from a R₁₆ measurement or from a R_{segment} measurement (30-100 m long). These defects have been used in the FRESCA tests.
- Defect D is the predominant defect in the machine. The stabiliser-stabiliser contact in the vertical gaps may degrade in time.
- Maximum safe operating currents are given for single-sided defect **B** (or **C**) as a function of the additional resistance R_{addit} (at 300 K), with $R_{addit}=R_{16,defect}-R_{16,good}$.

FRESCA tests determine heat transfer

Safe operating energy

Energy	τ _{RB} [s]	Max. <i>R</i> _{addit,RB} [μΩ]	τ _{RQ} [s]	Max. R _{addit,RQ} [μΩ]
3.5 TeV	50	76	10	80

- > 3.5 TeV operation is "just OK" wrt estimated worse splice of 90 $\mu\Omega$:
 - Conservative assumptions for RRR, ⇒ ongoing tunnel measurements
 - One versus two-sided defects, ...
- 5 TeV operation requires repair (and previous localisation !) of the highest resistance outlier splices
 - High current pulsing /thermal amplifier diagnostics?
- 7 TeV operation requires extensive consolidation of splices for safest long-term performance
 - Segment measurements at warm (or any other temperature) are not accurate enough to detect these small resistance values
 - R_{addit} may degrade during the lifetime of the LHC
 - Especially for small resistances, the measured R_{addit}(300 K) may not be representative for R_{addit}(10 K)
 - a shunt has to be added on all 13 kA joints, also on those with small R_{addit}. Joints with high R_{addit} or joints with large visual defects should be resoldered and shunted

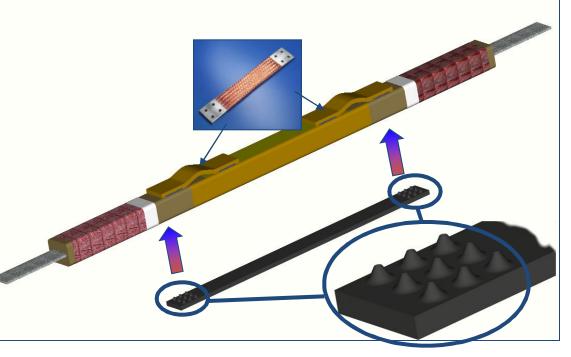

Verweij

¥.

13kA interconnection splices

- Improvement and better understanding of splice process and quality during 2008-09 shutdown
- Further improvements seek additional safety margin for 7 TeV and long-term

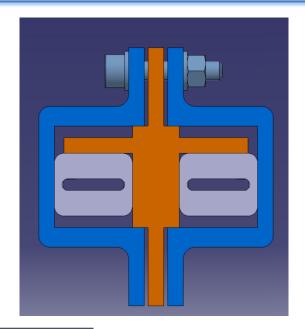
Ongoing improvement studies (induction coil design)


Fessia

13kA IC consolidation: shunt & clamp

Apply a 2 x 15 mm copper section in parallel to the copper to copper junction complying with the following requirements:

- Do not melt or interfere with the existing junction ⇒ Solder using Sn-Pb in order to have lower melting temperature than the base Sn-Ag soldering (183°C vs. 221 °C)
- Apply it without cutting the spools above the quadrupole bus bar
- Accommodate the shap
- Being redundant by des
- Be easily inspected and
- Be of rapid installation
- Use "small" tooling allo
- Use of tooling easy to n
- Possibly industrially bas


P. Fessia

13kA IC consolidation: insulation

- Provide electrical insulation. Bus bars are protected with polyimide 15 mm wide, 50% overlapped and they are separated by 12 mm of He. Total distance for electrical path 27 mm. This is equivalent to 4 KV at 1 bar.
- Accommodate the new shunt
- Accommodate the differences in bus bar geometry due to shape defects
- Provide enhanced cooling
- Block lateral movement during the ramp up in

current

Proof of principle to be done through FRESCA tests ASAP

For 7 TeV operation (5 TeV is a different story ...):

Experience from 2008-2009 shutdown:

- 236 splices with R16 measured (biased sample from segment measurements);
- 58 redone from R16, 43 redone from visual (considerable...);
- by considering unbiased data, ~15% splices would need redoing from R16 alone;
- but segment measurements cannot identify them precisely enough (for MQ in particular), plus need to open all M sleeves for a given segment, estimate ~90% of sleeves;
- if in addition we consider repairs from visual and preference towards systematically adding a shunt/clamp, we conclude:
- > Open all W interconnects and cut open all M sleeves, make local R16 measurement, redo ~20% splices, add shunt to 100% splices

Additional magnets/splices work

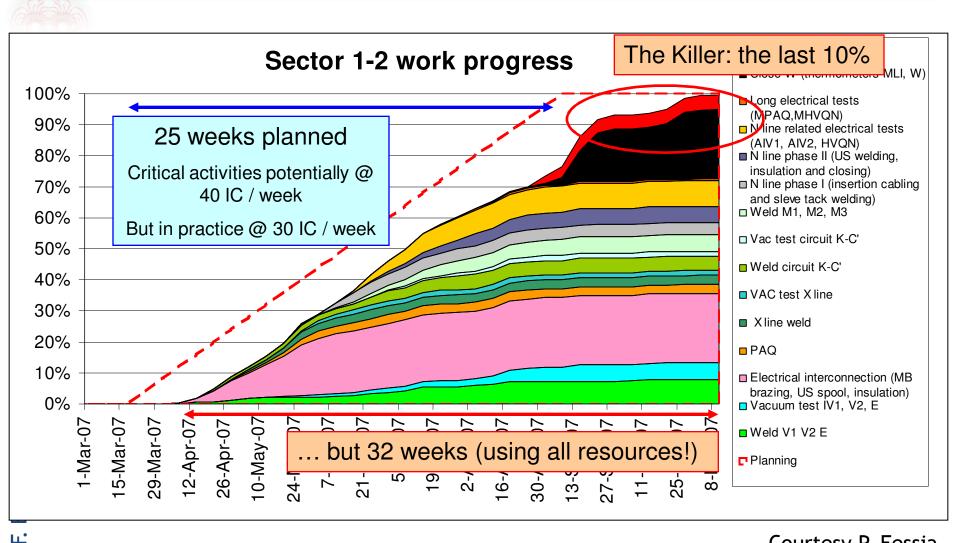
6	DN200 (arc pressure relief nozzles)	7-8, 8-1, 2-3, 4-5 (partly)			
((("Single event" splices for 5 TeV (warm)	~10 MB segments above $35\mu\Omega$, but MQ?			
	"Single event" splices for 5 TeV (cold)	~5 segments above 1-2nΩ			
	Connection cryostats	7-8, 8-1, 2-3, 4-5			
	Vacuum leak	2.4 others?			
	N line conne > a considera	able amount of			
	6kA praying				
	Spool connec non-standa	ard work !!!			
	Replace magnets? (damaged nested bellows, SC cable, cold IFS box, quench heaters)	~2-4 cases (e.g. QBBI.10R7, QBQI.10L5 araldite repair)			
	Y-lines	7-8, 8-1, others?			
	Damaged radiation/thermal screens	All sectors			
illou	Standalone Magnets (He level gauge)	7-8, 2-3			
ortiv	DFBA flexibles to check				
L	PIMs	RF ball test, a few preventive replacements, no global replacements?			
	•••	35 NCR, "closed with warning", HWC cases			

So how long will a shutdown take?

The size of this new task compares to series production:

- will not require some activities (e.g. jumpers, N-line) ...
- but will require to « undo » before « redoing » (e.g. cut welds, desolder): repair ≠ new
- on the good side: all magnets are in place (except if ...)

Resources used in IC series production:


- IEG (Main Contractor) ~100 workers
- activities were organised for 40 IC/week
- CERN ~100 workers for coordination, QC (including ELQA and VAC), troubleshooting, special activities
- 2.5-3 years

Resources used in 2008-09 IC shutdown:

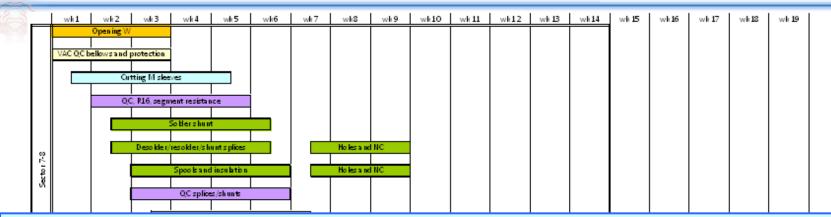
CERN ~100 workers

Bertinelli

Series experience: 1-2, the last sector

Courtesy P. Fessia

Estimate of IC resources needed


Activity	Quantity	Existing at CERN	To come in addition	Comments
Opening W	100%	0	12	FSUs as in 2008-09
VAC QC bellows and protection	100%	2	2	
Outtine M. closure	100%	C	_	1 Team Loader, 7 mechanics outting, 2 holeans

- to work on 1 "IC train" (but coordinate 2-3 sectors at the same time),
- 100 persons needed,
- of which ~ 40-45 are present (at CERN) with skills and experience,
- ~60 need to be integrated in addition (as in 2008-2009), e.g. FSUs, collaborations
- beware the risk of excessive parallelism (QC, supervision, coordination)
- remember the "last 10% effect"

Note: impact of this work on magnet repair/rebuilding, triplet project,... May prefer to introduce additional resources earlier (now?).

Length of shutdown: estimate 2, @50 IC/week

- at 50 IC/week (!!!) for critical activities,
- with a better understanding of work (tooling, methods ...)
- > 14 weeks for 1st sector
- ➤ 5 weeks later for 2nd sector ...

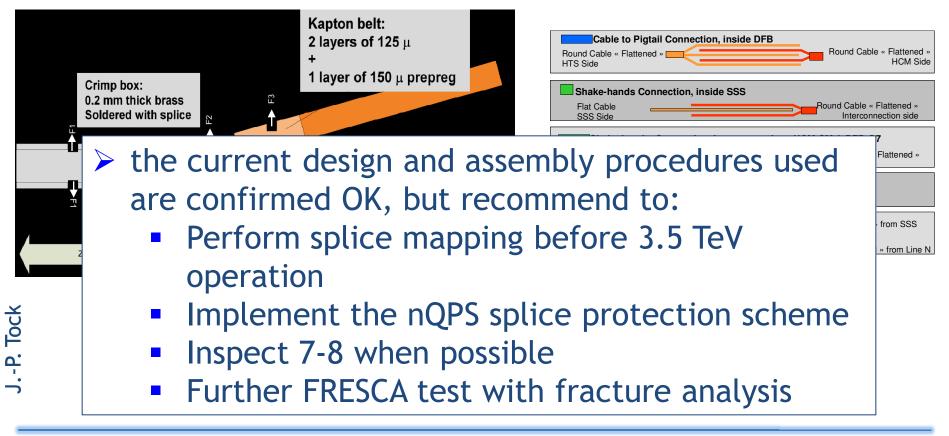
still need to fit DN200s and additional work but assume (!!!) this can be done in parallel

consider this for shutdown scenarios

Repairs

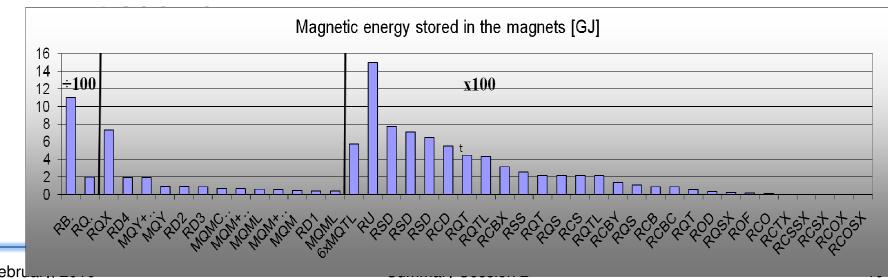
Some shutdown scenarios @50 IC/week

		1 st sector	1 st sector Last sector Co		omments				
All sectors		14 weeks	49 weeks	1 shutdown, no physics for 1 yea					
4 secto	To get the full picture need to include:								
7-8, 8-1									
2 secto 7-8, 8-1									
, , , ,	 Risk of t 	 Risk of this IC work: 							
	- Time	- Time taken,							
	- Number of new resources introduced,								
<u> </u>	- Amou	- Amount of parallelism							
<u>.</u>	 Addition 	 Additional IC work (specifically for 5 TeV) 							
5 February, 20	טדנ	Sum	mary Session 2						


- A Task Force was set up in November 2009 (35th LMC, 4 Nov. 2009)
- Mandate:
 - To review the status of all superconducting splices in the LHC machine and prepare the necessary consolidation actions for 7 TeV operation.
- Time frame: 6-8 months starting November 2009, so that the shutdown 2010-2011 can be adequately organized.

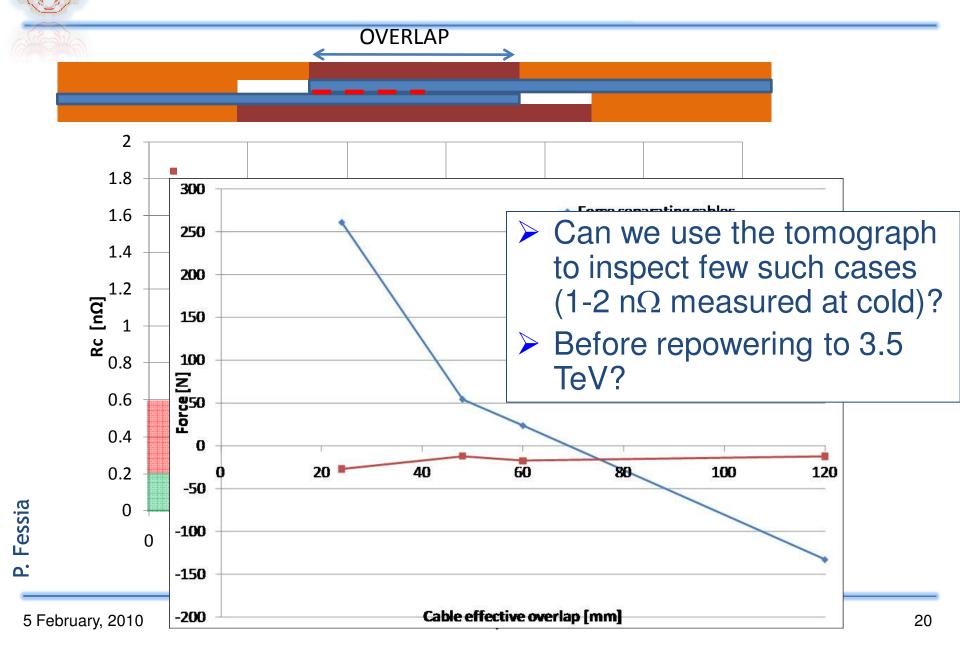
> may now need to review resources and timeframe in the light of Chamonix 2010

• WEB site: www.cern.ch/LHCsplices


6 kA praying hands splices

Analysed Q7L2 from current lead to current lead;
 Several splice types present in the same line
 FRESCA tests and structural analysis

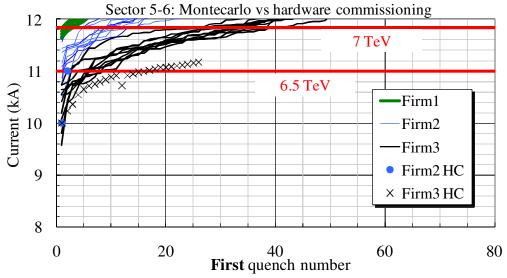
For other splices (600A ...) there are no showstoppers but in general there is a huge amount of study (100 000 splices!) so w.r.t. the original timeframe:


- set work priorities or reorganise work (additional resources)
- Consider a "double failure" risk analysis
- A few known cases for intervention
 - RCO.QA81.B2 open circuit

Catalan Lasheras

ż

Splice resistance at cold vs. effective splice length



Magnet training for 7 TeV

2008 experience in 5-6: trained up to 6.6 TeV, but slow training of Firm3 dipoles

□ Forecast:

- For 6.5 TeV a short training is expected (10-15 quenches per octant), needed time: a few days of training per sector
- For 7 TeV we have no experience lower bound: MonteCarlo method, at least 50 quenches needed per octant, Needed time: <u>Che month per sector ?</u>
- Firm3 anomaly under ongoin 12 for 12 data, location of quench, 3

E. Todesco

Thanks for your attention

Acknowledgements and thanks: Organisers and invitation to Chamonix2010, Chamonix Speakers, Interconnections Teams, LHC Splices Task Force ...