# A demonstrator for a level-1 trigger system based on µTCA technology and 5Gb/s optical links.

#### **Greg Iles**

Rob Frazier, Dave Newbold (Bristol University) Costas Foudas\*, Geoff Hall, Jad Marrouche, Andrew Rose (Imperial College)

20 September 2010

\* Recently moved to University Ioannina

# **CMS Calorimeter Trigger**

#### Main task:

Find jets and electrons from energy depositions inside the calorimeters.

Sort in order of importance and send 4 most significant to global trigger.



#### Potential benefits from upgrade:

- The trigger is effectively an image processor. Better resolution?
- Extra physics quantities?
- Better reliability?



# Requirements for an upgrade

- Must process 6 Tb/s
- Not a problem, just make it parallel, but....
  - Need to build physics objects, which don't observe detector granularity!
    - Data sharing
    - Data duplication
  - Need to sort physics objects
    - Avoid multi stage sort to minimise latency
    - Restricts number of "physics builders" due to fan in constraints
  - Only have approx 1us
    - Each serialisation is 100ns 200ns



## **Incoming Trigger Data**



Data per tower, per bx

ECAL: 8bits energy + FGV (FineGrainVeto)

HCAL: 8bits energy + MIP (MinIonisingParticle)

#### Geometry & link capacity



- Number of Regions: 22 (eta) x 18 (phi)
- 1 Region = 4x4 Towers
- 1 Link at 2.4Gb/s (8B/10B)
  - Equivalent to 4 towers
  - 6 bytes per bx
  - 12bits per tower
  - Currently use 9bits per tower

- Total number of links = 2160 links @ 2.4Gb/s
- Total BW = 5.2Tb/s

# Build Level-1 Calo Trigger Demonstartor

- Why?
  - Real life always far more complicated than gant chart
    - e.g. Local clock routing from MGT to fabric in Virtex II Pro took 6 months to fully understand in last calorimter project.
  - Understand system issues
    - Some things only obvious in hindsight
  - Enable firmware and software to get underway
    - Always lags in any project...

# **Original Plan: Fine Processing**

- CMS TriggerUpgradeWorkshop: 22 July 2009 \*\*
  - Split problem into two stages
  - Fine processing (electrons)
  - Coarse processing (jets)



## Plan B: Coarse Processing





For jets reduce resolution by factor of 2

- Perfectly adequate
- Nicely matches HF resolution









#### Conventional

- Process entire detector on each bx
- Deal with electrons/taus first.
- Build jets from earlier energy clustering or take tower data and coarse grain to 2x2 towers.
- Pros:
  - Simple design
- Cons:
  - Less flexible, but does it matter...

#### Time Multiplexed \*

- Akin to High Level Trigger processor farm
  - Process entire detector over ≈9bx
  - Switch between 10 systems operating in round robin method.
- Latency impact of 9bx regained by fewer serialisation steps
- Pros:
  - Jet+Elec processing in single fpga
  - Max processed/boundary area
  - Scalable: 10 identical systems
  - Redundant: Trigger keeps operating if partition lost, albit at 90%
  - Flexible: Based on single card
- Cons:
  - Never been done before

#### \* First proposed at TWEPP last year by John Jones



#### Time Multiplex example spans 1 tower in eta and 72 towers in phi. It receives ECAL & HCAL data. Each PP card has 36 SLB links@ 2.4Gb/s 10 output links. One for each MP processing node. Cards on eta boundary PP PP x32 have 20 outputs x32 CAL+ CAL-(data duplicated). **PP = PreProcessor** Node 1 x32 x4 x4 x32 MP = MainProcessor MP-MP+ 36 links@ 9.6Gb/s Node 2 MP-MP+ MP Nodes 3 to 10 1 links@ 3.2Gb/s 64+20 cards with 2.4Gb/s SLB

11

34+20 cards with 4.8Gb/s SLB

Each PP (PreProcessor) card

## **Objective of demonstartor system**

- R&D project into both **Conventional** and **Time Multiplexed** 
  - Develop common technology
  - 90% of hardware, firmware and software common to both
- Focussing on Time Multiplexed Trigger at present
  - Gain better understanding of different approach
  - Belief that it offers significant benefits to conventional trigger
    - Flexible: All trigger data available at tower resolution
    - Redundant: Loss of a trigger partition has limited impact on CMS
      - i.e. Trigger rate reduced by 10%. No regional area loss.
    - Scalable: Can prototype with single crate
      - i.e. Just 10% of the final hardware
      - Uses single uTCA card throughout system

## Based around MINI-T5

- Double Width AMC Card
- Virtex 5 TX150T or TX240T
- Optics
  - IN = 160 Gb/s (32x 5Gb/s)
  - OUT = 100Gb/s (20x 5b/s)
- Parallel LVDS
  - BiDir 64Gb/s
  - 2x40Pairs at 800Mb/s
- AMC
  - 2x Ethernet, 1x SATA
  - 4x FatPipe, 1x Ext FatPipe



#### Can be used for Standard or Time Multiplex Architecture

#### Latency

- Modern serial links have many advantages, but latency isn't one of them
- Latency measuremnets based on Virtex
   5 GTX and GTP transceivers
  - No tricks
    - e.g. No elastic buffer bypass
    - Why? Tricks sometimes backfire!
  - Measured 5.3 bx at 5Gb/s
    - Includes sync firmware
    - Be conservative assume 6.0 bx

#### Current latency at Pt5 (bx)

- + 2 SLB Tx (estimate)
- + 2 SLB to RCT cable
- + 40 RCT+GCT
- + 3 GCT to GT
- = 47 Total

#### Latency: Time Multiplex



#### **No Lateny penalty**

Greg Iles, Imperial College



#### Firmware Infrastructure - Finished

- Optical transeivers:
  - Up to 32 GTX transceivers at 5Gb/s
  - Pattern RAM injection & capture
  - CRC check
  - Low latency automatic synchronisation
    - aligns links on a user defined signal
    - e.g. beginning of a packet or BC0
- DAQ:
  - Event pipeline with automatic capture and buffering
    - i.e no more adjusting the latency!



Lab development system

- Ethernet:
  - UDP interface Thanks to Jeremy Mans

## Firmware Algorithms – Work in progress

- Based on Wisconsin algorithms Uses Modelsim Forgein Language • Interface (FLI) to verify algorithms Monika Grothe, Michalis Bachtis & Sridhara Dasu **TPG Input**  Fully implemented & verified 2×2 cluster finder Electron/Photon ID module ٠ C++ VHDL Cluster overlap filtering • Algorithm Algorithm Cluster weighting ٠
  - Work started, but postponed to allow SW development
    - Cluster isolation
    - Jet finding



Check

#### Firmware verification: Test setup

- Test setup slightly different to proposed system, but concept the same.
- Uses 8bit rather than 12bits energies (i.e. current CMS)
  - Would require 28 links at 5Gb/s to load data in 24bx.
  - Final system uses 72 links across 2 boards running at 10Gb/s to load 12bit data in 9bx.
- Different length fibre to make sure sync unit operating correctly.

| Full electron algo in xc5vtx150t  |
|-----------------------------------|
| Slice Registers 12460/92800 = 13% |
| Slice LUTs 17167/92800 = 18%      |



| Partial electron algo in xc5vtx150t |               |        |             |
|-------------------------------------|---------------|--------|-------------|
| Slice Logic Utilization:            |               |        |             |
| Number of Slice Registers:          | 21,143 out of | 92,800 | <b>22</b> % |
| Number of Slice LUTs:               | 27,571 out of | 92,800 | <b>29</b> % |
|                                     |               |        |             |
| Specific Feature Utilization:       |               |        |             |
| Number of BlockRAM/FIFO:            | 220 out of    | 228    | <b>96</b> % |
| Number of GTX_DUALs:                | 13 out of     | 20     | <b>65</b> % |

## Software: Architecture

- Hardware controller PC separates the Control LAN and the User code from the Hardware LAN and the devices
- Unlike current Trigger software architecture, all network traffic hidden from end user
- Made possible by common interface layer within the firmware and mirrored within the software
- Simply python interface also available.



#### Software: Work in progress

- Rob Frazier (Bristol) writing the Controller Hub Software within a high performance web server framework
- Andy Rose (Imperial) writing the low level client side software
- Project hosted on HepForge

- Low Level Client Side software finished
  - Hierachial register map
    - Allows VHDL blocks to be reused.
    - i.e. make simple VHDL block and then instantiate multiple times.

| 🚊 Code Archive for C  | MS Trig 🗙 🕀                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
|-----------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| ← → C fi              | http://projects.hepfor                              | ge.org/cactus/index.php                                                                                                                                                                                                                                                                                                                                                                                              | ► 🗗 🖉                    |
| 🏉 Suggested Sites 🛛 🌔 | 🕽 Web Slice Gallery 🛛 😢 Add-ons 🤅                   | alery - We                                                                                                                                                                                                                                                                                                                                                                                                           | C Other bookmarks        |
| CACTUS                | <b>G</b> 0!                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      | hosted by CEDAR HepForge |
|                       |                                                     | Code Archive for Cms Trigger UpgradeS<br>Home                                                                                                                                                                                                                                                                                                                                                                        |                          |
|                       | Home     Quality Control     Repository     Contact | <ul> <li>CACTUS is an entirely new control framework for the upgrade to the CMS level-1 trigger.</li> <li>The aim of the project is two-fold;</li> <li>To build a library of common, reuseable software and firmware elements to improve the quality and maintainability of the system over what currently exists.</li> <li>To ensure that all elements are property documented and unit-lested/testable.</li> </ul> |                          |
|                       | This project                                        | is unrelated to the Cactus Code Numerical Relativity project which may be found here.                                                                                                                                                                                                                                                                                                                                |                          |
|                       | This projec                                         | t page has only recently been created — please come back soon for more information.                                                                                                                                                                                                                                                                                                                                  |                          |
|                       |                                                     | Last updated: Sc                                                                                                                                                                                                                                                                                                                                                                                                     | af Jun 19 17:44:14 2010  |

#### **Current Status**

- MINI-T5 Rev1 back
  - USB2 capability
  - Avago optics
  - It even has a front panel!
- Next
  - Sort and Jet clustering
  - Build system





Current focus has been on the **MainProcessor** firmware/software.

Next focus on **PreProcessor** and buildining a system of multiple cards.

# **Questions** ?

