

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Use of Triple Modular Redundancy (TMR) Technology in FPGAs for the Reduction of Faults due to Radiation Implementation in the ATLAS Monitored Drift Tube (MDT) Readout FPGA

> M. Fras, H. Kroha, O. Reimann, R. Richter, A. Rudert B. Weber Max-Planck-Institut für Physik, Munich, Germany

MDT big wheel

Control and Readout Link Unit: Chamber Service Module (CSM) Power connector Cables to 1.6 GBps **Optical link to SPI Interface** supplying CSM and mezzanine Serializer readout system for readout of ASIC (GOL) mezzanine cards cards (MROD) temperatures

MDT chambers at ATLAS• 1150 chambers• 1102 CSMs• 14218 mezzanine cards• 353952 tubes	FPGA: Xilinx Virtex-II XC2V2000FG676 Power Passive Interconnect	
Components of a MDT chamber: • Up to 432 tubes with 30 mm diameter • 18 mezzanine cards	 How the muon system works: Muons are detected by ionizing the gas in the tubes leading to a charge pulse The signals are digitized by the ASD chip on the mezzanine card The drift time of the hit is measured in the AMT chip 	Optical LinkLHC-Clock andXilinx FPGAJTAG-Interface toproviding LHCTrigger ReceiverVirtex-II 2000slow controlclock and triggerASIC (TTCRX)XC2V2000FG676(ELMB)
 One chamber service module (CSM) One slow control interface (ELMB) Alignment system Gas and high voltage connection 	 The drift time data are sent to the CSM, which multiplexes them onto an optical link to the readout system (MROD) The CSM receives power, slow control, LHC clock and trigger information which it distributes to the 18 mezzanine cards 	 CSM main functions: Provide control and monitoring of operation parameters Continuously receive serialized data from mezzanine cards Process and multiplex data to readout system
Radiation Environment for MDT Front-End Electronics	Radiation Effects on Electronics	Possible Remedies for Radiation Effects
1000 Instantaneous photon fluence 10 ⁴ 800 10 ² 10 ¹ 9 400 10 ¹ 200 0 500 1000 Outer 0 500 1000 2000 Middle barrel Inner barrel Small wheel Big wheel Outer wheel	Photon (X, γ)Heavy lonProtonNeutronhadronsImage: SiliconImage: Silicon<	General mitigation methods for FPGAs • User Data SEU => TMR (Triple Module Redundancy) => Failsafe FSMs => Use 2 or more redundant devices • Configuration SEU => Configuration Readback => Scrubbing (re-write configuration bits) => (TMR) • FPGA SEFI => Redundant devices • Silicon Effects (Surface + Bulk) => Shielding => Shielding => Radiation Hard Technology (Virtex)
Radiation affecting CSM: • CSM will be exposed to radiation environment like MDT tubes • Radiation level strongly depend on location Simulated radiation environment with safety-factors for 10 years of LHC operation:	 Special Case: Radiation Effects on SRAM-based FPGAs User Data SEU (Single Event Upset) E.g. Corruption of data, parity error, invalid state in FSM, possible lock-up of cor Configuration SEU 	QPro, Anti-Fuse, Flash-based, ASIC) => No SEL observed in Virtex-II up to 19 kRad accorsing to XAPP989 (v1.0) Source: Brendan Bridgford, Carl Carmichael, and Chen Wei Tseng, "Single-Event Upset Mitigation Selection Guide", XAPP987 (v1.0) March 18, 2008
• TID: $6.24 \text{ kRad} = 62.4 \text{ Gy}$	Changes to the FPGA configuration cells can change device functionality.	• Apply Xilinx Triple Module Redundancy (XTMR)

• SEE (Single Event Effect): 2.67 · 1010 n/cm2

Estimates from irradiation test done by R. Ball, T. Dai, J. Chapman in 2005 • TID for CSM FPGA ~ 45 kRad = 450 Gy • About 90 configuration SEUs lead to CSM operation disruption • Projected 1.4 disruptions per hour within all 1102 CSMs

XTMR Features

- Software from Xilinx (TMRTool) for Windows • Extra step in firmware design flow
- Quite easy to use: almost push-button solution • Automatic triplication of design parts
- Removal of half-latches (weak keeper)
- Replacement of critical blocks (e.g. SRL16)
- Option to leave out parts from triplication

Synthesis .ngc (XST) .edf	User ember	
I edin (third party) NGDBuild .ngo TMRTool .edif NGDBuild . MAR	MRTool 2.2) Septo 07	
PAR PAR	Glinx, "T G156 (v 12, 20	
Step 1 Pre-XTMP Project Step 2 TMRTool Project Utility C4 01 082907	Source: X Guide", U	

• FPGA SEFI (Single Event Functional Interrupt) Failure of support circuit, e.g. JTAG TAP, reset or configuration block, clock gen 👼 Often leads to complete malfunction of device. Silicon Effects (Surface + Bulk) E.g. Latch-up, degradation of semiconductor elements, increased power consumpti partial or total malfunction, physical destruction

- After synthesis, the EDIF file can be opened in TMRTool. The logic blocks are shown in a tree-like structure. From there, the user can select 4 different types how each component is treated by TMRTool:
- Standard: The IOs and the logic function of the block are triplicated.
- Custom: The user must provide a custom model with triplicated IOs and adequate function.
- Converge: The component is not triplicated. If an input signal comes from a triplicated net,
- a voter is inserted before this input. The output signals are faned out to 3 nets. Don't Touch: The component is not triplicated. If an input signal comes from a triplicate
- nets only the "TR0" net is connected to the input. No voter is inserted before the input.

Testing of CSM Firmware

Logic analyzer Logic analyzer pods **Slow control**

- Configuration memory scrubbing using a self-hosted scrubbing unit to prevent accumulation of SEUs that would lead to malfunction even if TMR is used.
- Check CSM status via slow control regularly during runs. Reprogram the FPGA and reload the user settings if an error is detected.
- Power-cycle the CSM during every run break or at least reboot the FPGA.

Application of XTMR on CSM Firmware

Limitations for CSM firmare

• Use of failsafe FSM to avoid lock-ups

- No triplication of IO-pins possible, because not foreseen in PCB design
- Only a part of the logic can be TMR'd due to limited FPGA resources (global clock nets, **RAMs, logic elements)**
- Only the main clock for device access via slow control can be triplicated. The remaining 4 clock nets for data processing cannot be triplicated.
- No use of external power (GND or VCC) possible, unless modifications to PCB are made.
- Timing critic nets which need register placement in IOBs cannot be triplicated.

Critical parts of CSM Firmware are triplicated using the TMRTool software

- [•] Triplication of complete Control Part: interfaces to
- JTAG (slow control)
- TTCRX (clock and trigger receiver chip)
- GOL (high speed serializer ASIC) interface
- **Triplication of main (10 MHz) clock; missing resources for other clock nets**
- Parts of data path TMR'd:
- input stage
- flow control
- Parts of data path not TMR'd:
- serial to parallel converter - input data FIFOs

Setting up XTMR for CSM firmware

- 1. Set "Power Source" to "Internal". This is necessary unless an external reference power source on the PCB is available.
- 2. Apply the XTMR type "Standard" to all components.
- 3. Remove components that should not be TMR'd, e.g. IOs, clock nets, parts of data path - whenever possible, use the type "Converge" to benefit from upstream triplication - some components need to be set to "Don't Touch", e.g. LVDS IOs, DCMs

CSM Future Plans

Configuration memory scrubbing

Effects of XTMR Applied on CSM Firmware

TMR design flow works well

• FPGA slice (primitive logic elements) usage is over 90 % with XTMR **Issue: Increased power consumption**

Excerpt of place & route report.	normal version TMR'd version		
Number of BUFGMUXs	7 out of 16	43% 9 ou	it of 16 56%
Number of DCMs	2 out of 8	25% 2 or	ut of 8 25%
Number of External DIFFMs	73 out of 228	32% 73 or	ut of 228 32%
Number of LOCed DIFFMs	73 out of 73	100% 73 or	ut of 73 100%
Number of External DIFFSs	73 out of 228	32% 73 or	ut of 228 32%
Number of LOCed DIFFSs	73 out of 73	100% 73 or	ut of 73 100%
Number of External IOBs	253 out of 456	55% 255 or	ut of 456 55%
Number of LOCed IOBs	253 out of 253	100% 255 or	ut of 255 100%
Number of RAMB16s	19 out of 56	<u>33%</u> 19 or	ut of 56 33%
Number of SLICEs	4480 out of 10752	41% 9986 or	ut of 10752 92%
Number of TBUFs	0 out of 5376	0% 6 01	ut of 5376 1%

Increased power consumption results in higher component temperature • FPGA: Increased core current by 0.2 A, additional 0.3 W dissipation => Increase in temperature of ~ 5°C **Voltage regulator for FPGA core** voltage (1.5V): additional 0.5 W => Increase in temperature of ~ 21°C Mounting of heat sinks on affected components is reasonable

CSM board with Xilinx FPGA Adapter boards

- Test procedures and performance results of TMR'd firmware • Verify new firmware against "golden reference" in simulation and on real system • Test in the laboratory with pattern generator and logic analyzer • Test in the laboratory with 3 AMTs and FILAR card (25 and 50 MHz GOL speed) • Stimulate AMT with pulse generator Test at cosmic ray test setup of the LMU in Garching with 18 AMTs, i.e. a full MDT
- chamber
- -> TMR'd CSM sitting in test setup since Nov 2009
- -> Measurement of drift spectra shows no difference
- -> One hook-up observed during operation of several days, reason possibly other than firmware (software, slow control etc.)
- => All tests show normal operation.
- => No issues with timing or routing resources.

Schematic of Self-Hosting Configuration Manager

Source: C. Carmichael, and C. Wei Tseng, "Correcting Single-Event Upsets with a Self-Hosting Configuration Management Core", XAPP989 (v1.0) April 2, 2008

Due to PCB-Layout, only selfhosted configuration memory scrubber possible for CSM **Improves radiation tolerance**

Choice of implementation FSM: most robust solution, but consumes a lot of FPGA resources; limited complexity in scrubbing algorithm Soft-Processor (Picoblaze): small footprint, flexible, powerful, but memory is vulnerable to SEUs

Current CSM board

- [•] Implementation of self-hosted scrubber to heal configuration memory SEUs
- Tests with arbitrary configuration bit errors injected into FPGA via JTAG
- Tests of CSM firmware under radiation in test setup and finally at ATLAS - normal version
- TMR'd version
- TMR'd version + configuration memory scrubbing

New version of CSM board for ATLAS upgrade

- **Replace slow control and readout link with new system (GBT)**
- **Replace FPGA with respect to higher radiation environment**
- => Virtex-5 offers better solution for SEU correction in configuration memory
- => Alternative: Switch to flash-based FPGAs like ProASIC3 from Actel
- **Implement front-end trigger and selective readout: new feature to reduce data volume**