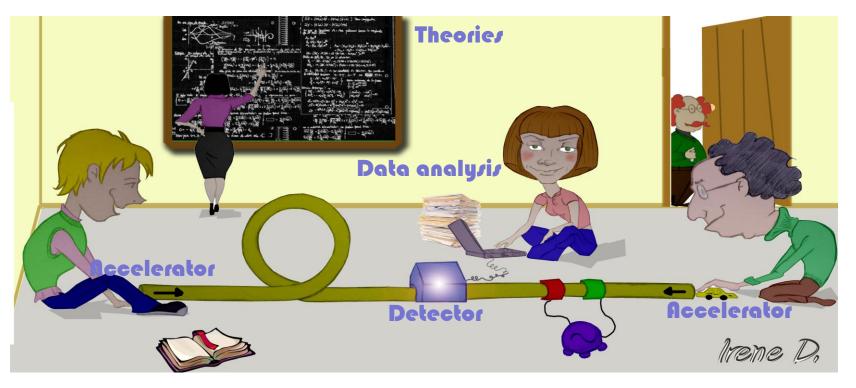


Readout Electronics for Low Dark Count Geiger Mode Avalanche Photodiodes Fabricated in Conventional HV-CMOS Technologies for Future Linear Colliders

<u>E. Vilella¹</u>, A. Arbat¹, J. Trenado², O. Alonso¹, A. Comerma², D. Gascon², A. Vilà¹, L. Garrido², A. Diéguez¹

¹Systems Instrumentation and Communications (SIC) – Dept. of Electronics ²Dept. of Structure and Constituents of Matter University of Barcelona (UB), Barcelona, Spain <u>evilella@el.ub.es</u>

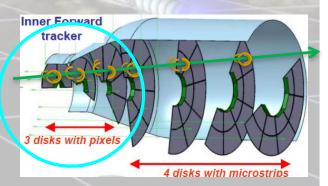
- o Introduction
- Avalanche photodiodes in CMOS
- o Technologies under comparison
- GAPDs and readout circuits for HEP experiments
 - Beam structure
 - Proposed readout circuits
 - Test and results
 - Comparison
- o Conclusions



Outline

Motivation: Future colliders

- ✓ Next collider will be a linear collider
- ✓ Still not clear whether a ~ 1TeV (ILC) or multi TeV (~3TeV) CLIC

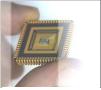

- Strict technology requirements posed
 by the ILD (International Large Detector)
 Concept Group (last version Feb. 2010)
 - Low material budget (0.2-0.5% X₀)
 - To reduce errors from multiple scattering
 - High spatial resolution

UNIVERSITAT DE BARCELONA

- Best achievable Φ resolution \rightarrow 5µm
- Pixel size \rightarrow 20µm x 100µm
- Occupancy (3rd layer of the FTD)
 - Background level \rightarrow 0.001-0.002 hits/cm²/BX
- High readout speed
 - BX ILC \rightarrow 337 ns
 - BX CLIC \rightarrow 0.5 ns
- Radiaton tolerance & EMIs tolerance
- Minimum power dissipation (no cooling)

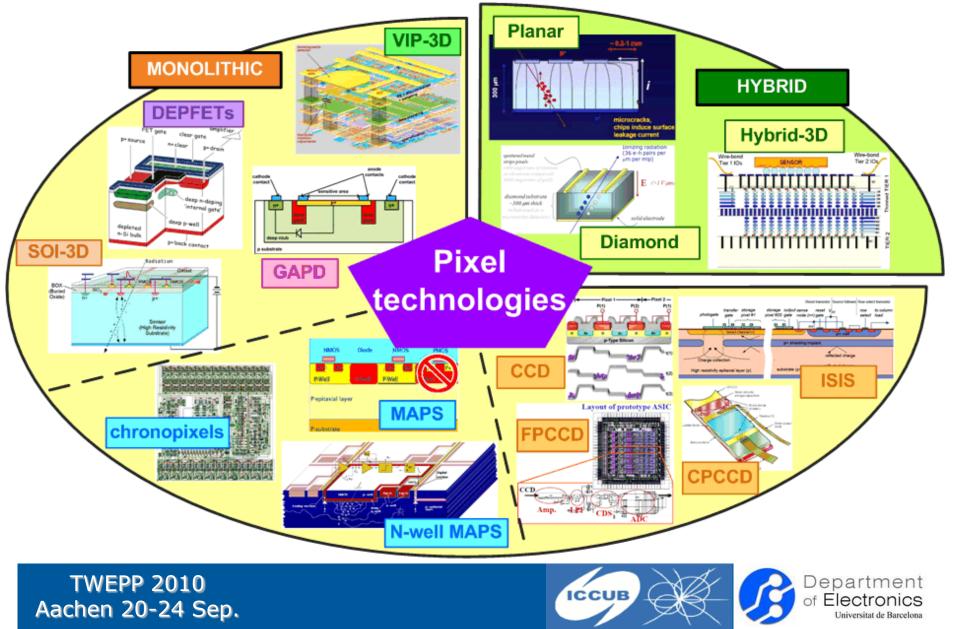
POSTBON CONTRACTOR MINIMATERI VICTORIAL MINIMATERI VICTORIAL

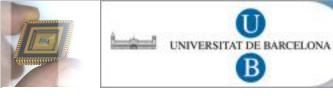
Vertex detector

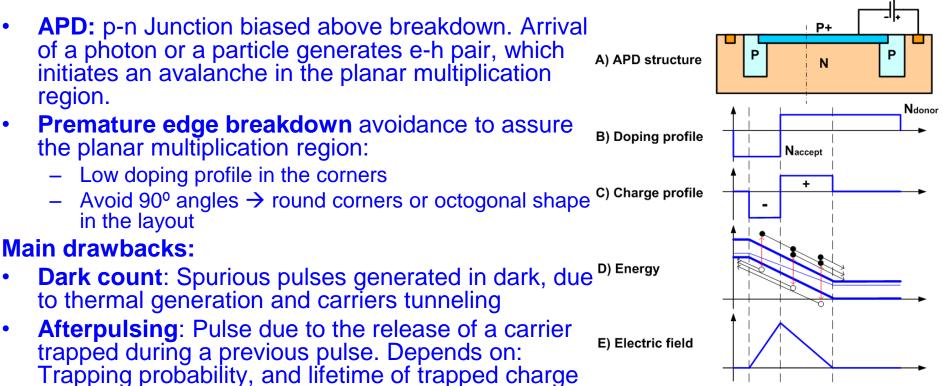


Tracker detector

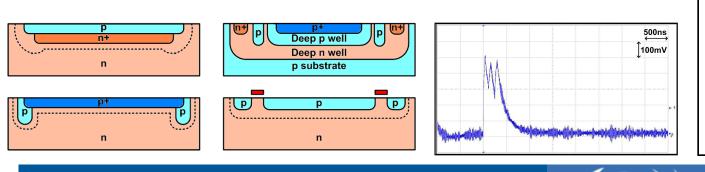
ICCU

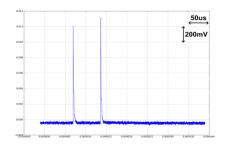

Department


Universitat de Barcelona


UNIVERSITAT DE BARCELONA

Pixel detectors



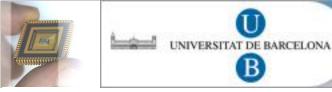

Avalanche photodiodes in CMOS (1)

CCU

TWEPP 2010 Aachen 20-24 Sep.

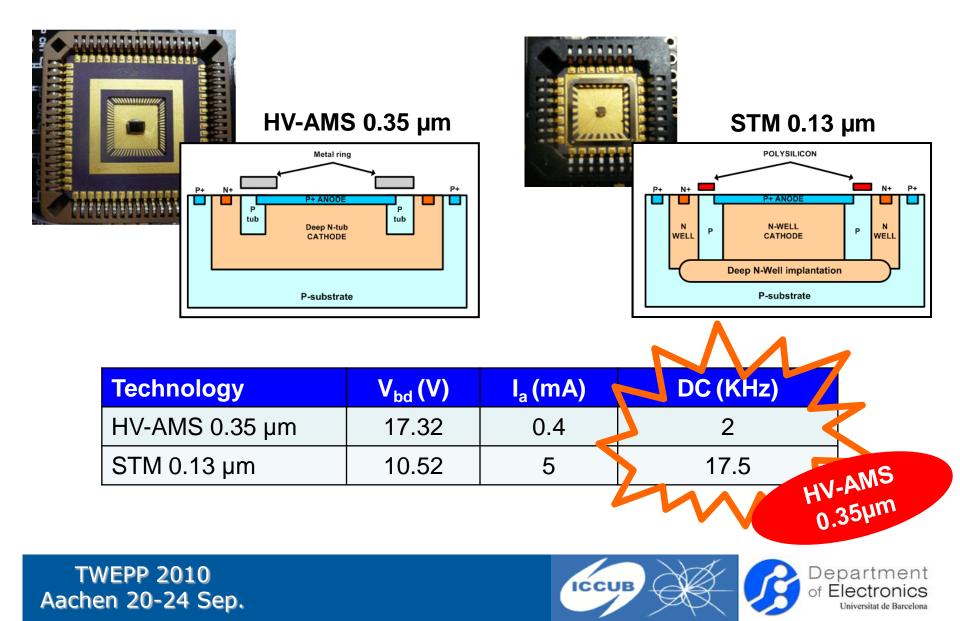
Department

Universitat de Barcelona


• Motivation for Geiger-mode APDs

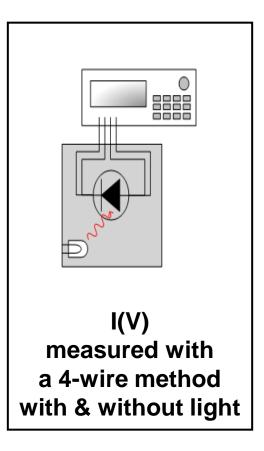
- ☑ A detector with high intrinsic gain (>10⁸)
- ☑ Excellent timing accuracy
 - ps rise time
 - short recovery times
 - possible single hit detection
- ☑ Compatible with standard CMOS technologies
 - on-chip integration of readout circuits
 - low supply voltage requirements
 - reduced power consumption

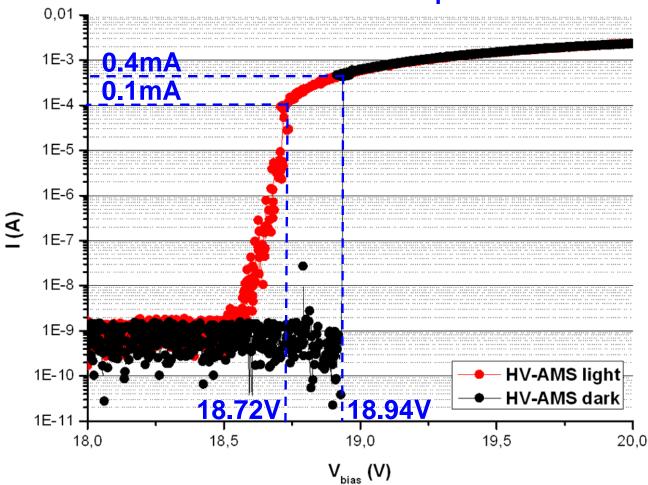
• However...


- High intrinsic level of noise (dark counts)
 - false counts
 - severe performance limitation
 - increase of the readout electronics area to store the false hits

B

Technologies under comparison

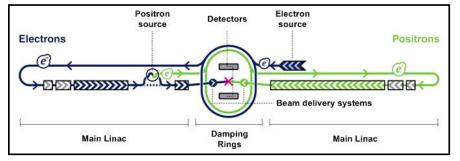

Characterization: V_{BD} & linear mode

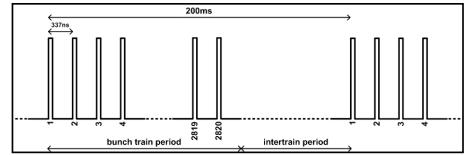

Department

Electronics

Universitat de Barcelona

2010 APDs chip





ICCUB

Beam structure

0.114

 \boxtimes

0.1

0.2

HV 0.35um 20x20 LV 0.13um 20x20

HV 0.35um 20x100

30.28

17.36

2.06k

0.4

Department

Electronics

Universitat de Barcelona

0.5

0.6

35.0k

30.0k

25.0k

20.0k

15.0k

10.0k

5.0k

counts/s

ICCU

acquisition phase

readout phase

- \circ ILC timing
 - 2820 BX in 0.95ms
 - BX spacing of 337ns
 - 199.05ms quiet time

• ILC background

• 0.001-0.003 hits/cm²/BX for the 3rd layer of the FTD

 $(0.003 \text{ hits/cm}^2/BX) \cdot \frac{1 \text{ cm}^2}{(1 \cdot 10^4 \, \mu \text{ m})^2} \cdot \frac{20 \, \mu \text{ mx} 100 \, \mu \text{ m}}{\text{ pixel}} \cdot \frac{2820 \, \text{BX}}{\text{ train}} = 1.69 \cdot 10^{-16} \, \text{hits/ pixel/train}$

\circ ~ 0.35 μm HV-AMS CMOS DC noise in ILC

38kHz/pixel (20µm x 100µm @ 18.28V)

 $D.C._{EFFECTIVE} = \frac{38kHz}{pixel} \cdot 10ns \cdot \frac{2820BX}{train} = 1 \ false \ hits/ \ pixel/train$

Gated acquisition

0.3

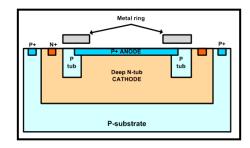
Overvoltage (V)

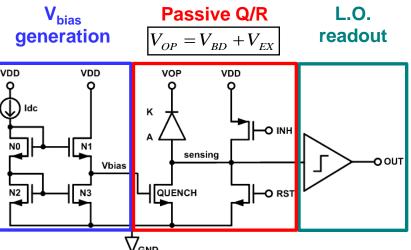
Readout circuits. V_{bias} generation.

V_{bias} generation 0

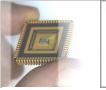
- Current source \rightarrow control of $\Delta V_{\text{sensing}}$ during the 'off' period thanks to $I_{\text{DC}} \rightarrow \left| \Delta V_{\text{sensing}} = (\tau_{OFF}/C) \cdot I_{DC} \right|$
- Traps emptied before the new 'on' period \rightarrow afterpulsing probability \downarrow

Passive quenching/recharge Ο

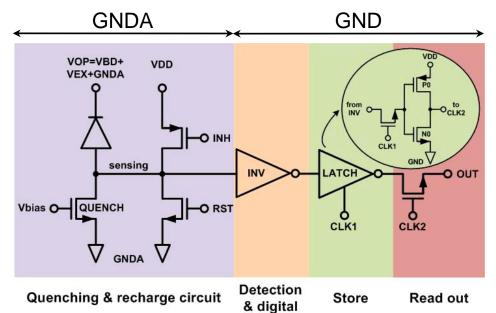

- **QUENCH** Active load \rightarrow pMOS or nMOS topology?
 - nMOS topology allows fully isolation between the deep ntub/p-substrate and the sensing node \rightarrow reduction of the total capacitance \rightarrow response time \downarrow
 - nMOS transistor with $(W/L)_{n} = (0.8 \mu m/5 \mu m)$
 - $I_D < I_{GAPD}$ latching current \rightarrow correct quenching
- **INH** Gate command through pMOS transistor.
 - $INH = 1^{\circ} \rightarrow 0^{\circ} \text{ period} \rightarrow \text{free running}$
 - INH = '0' \rightarrow 'off' period \rightarrow no particle detection
 - **RST** GAPD recharge through nMOS transistor.
 - RST = '1' \rightarrow V_{OP} is restored (1ns)


L.O. readout... \bigcirc

but V_{Th} of MOS transistors (V_{Thp}=0.65V, V_{Thn}=0.5V) makes avalanche detection difficult...


ICCUB

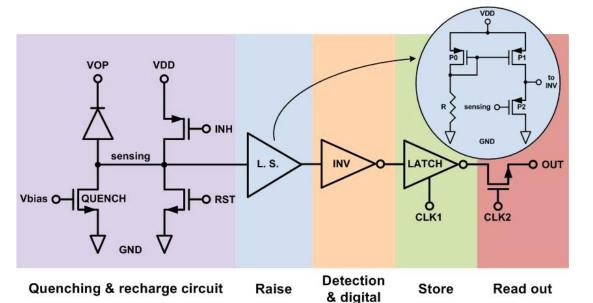
TWEPP 2010 Aachen 20-24 Sep.



Department

Readout circuits. 2 grounds scheme.

Gated acquisition	CLK1	INH	
'on' period	'1'	'1'	
'off' period	'0'	'0'	
Reset → RST = '1'			
Readout \rightarrow CLK2 = '1'			


Main features:

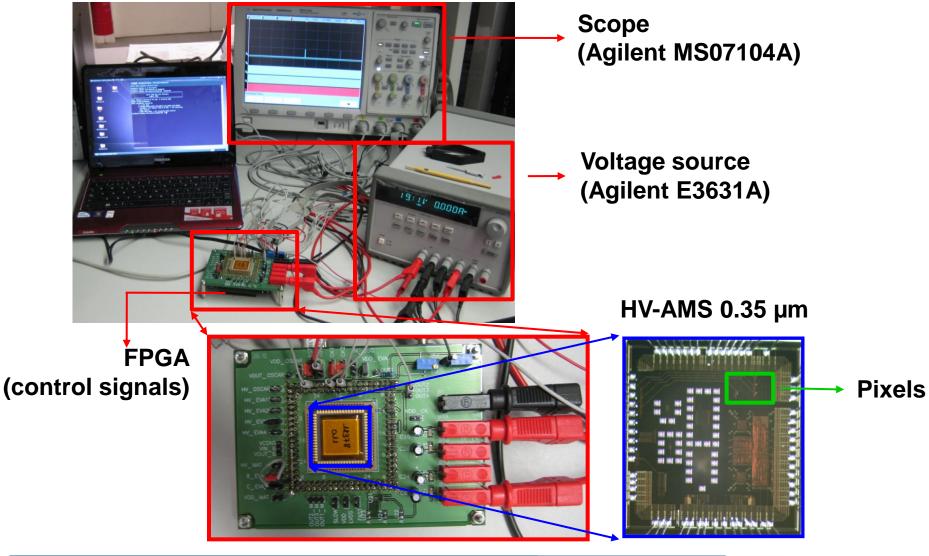
- 2nd ground (GNDA > GND) to enable low V_{EX} operation
- Minimum area latch to store the resulting value of the 'on' period
- Readout with external control (CLK2 pass gate)
- Upon particle hit (or D.C):
 An avalanche fires
 V increases from
- $V_{sensing}$ increases from GNDA \rightarrow GNDA+ V_{EX}
- If GNDA+V_{EX} > V_{th} inverter
 → the avalanche is detected

Readout circuits. Level shifter.

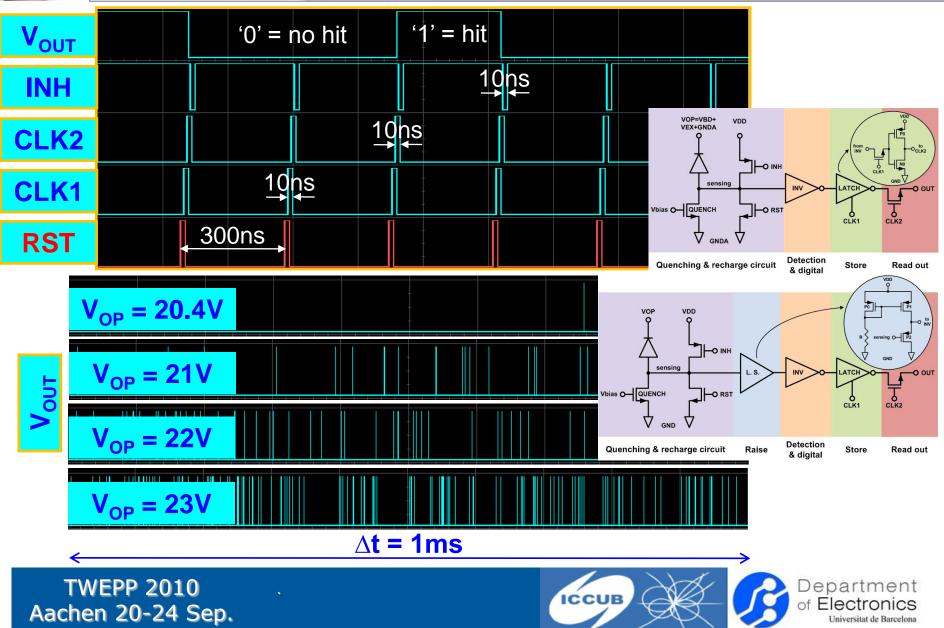
Main features:

- L.S. with external resistor
- Minimum area latch to store the resulting value of the 'on' period
- Readout with external control (CLK2 pass gate)

Gated acquisition	CLK1	INH	
'on' period	'1'	'1'	
'off' period	'0'	'0'	
Reset → RST = '1'			
Readout \rightarrow CLK2 = '1'			


- <u>Upon particle hit (or D.C):</u>
- An avalanche fires
- + V_{sensing} increases from $\text{GND} \rightarrow \text{V}_{\text{EX}}$
- L.S. raises V_{EX} to V_{EX} > V_{th} inverter (1.65V)
 → the avalanche is detected

Test. Set-up.



UNIVERSITAT DE BARCELONA

B

Test. Results.

Readout circuits. Track-and-latch comparator.

ICCUB

VDD

P5

ont o

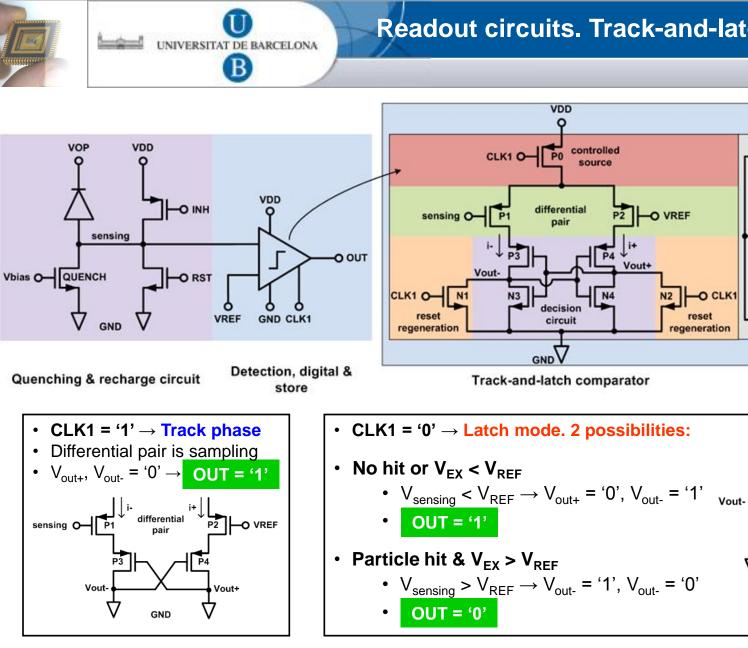
N5

Output buffer

i+ |

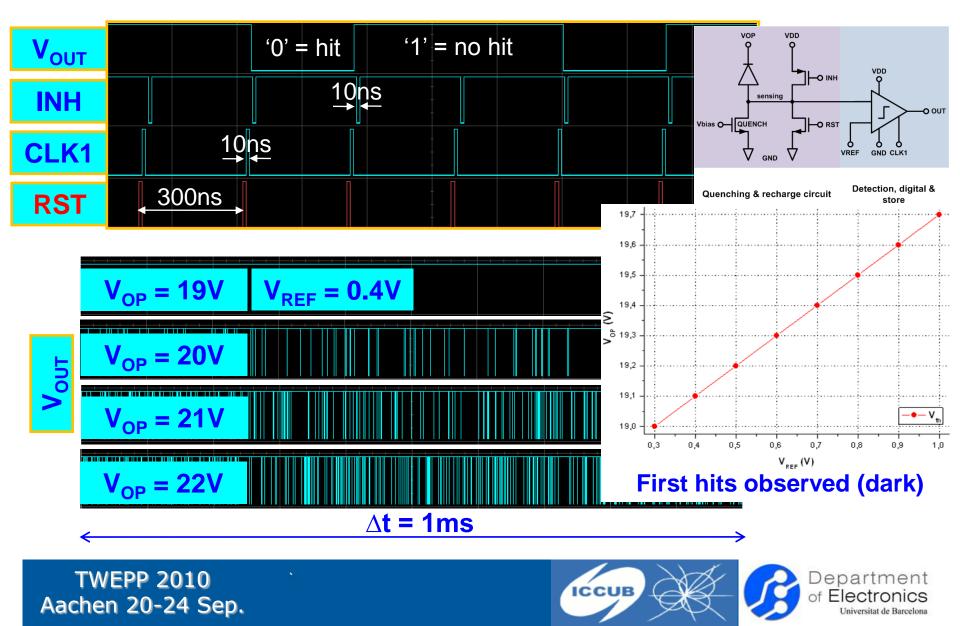
Department

Electronics


Universitat de Barcelona

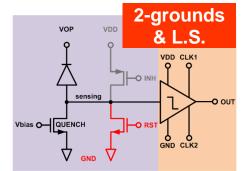
Vout+

GND


GND

O OUT

Test. Results.



UNIVERSITAT DE BARCELONA

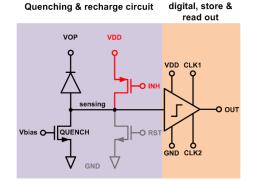
Detection.

B

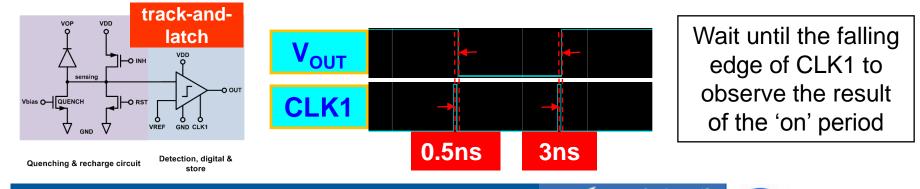
Readout circuits. Comparison.

Signal	Value
RST	'1'
CLK1, CLK2	'1'
INH	'1'

Propagation delay	
Readout circuit	' 0'
2 grounds scheme	1.8ns
Level shifter	1.7ns


Propagation delay	
Readout circuit	'1'
2 grounds scheme	0.5ns
Level shifter	1ns

Department


of

Electronics

Universitat de Barcelona

Signal	Value
RST	'0'
CLK1, CLK2	'1'
INH	'0'

ICCUB

Conclusions

• Conclusions

✓ GAPD-pixels are possible candidates for tracking systems in future linear colliders in order to have single BX resolution

$\checkmark\,$ We have designed GAPD-pixels with low dark count rate

- Standard 0.35µm HV-AMS CMOS technology
- Sensitive area of 20µm x 100µm
- Gated acquisition with an 'on' period of 10ns
- Readout electronics for low reverse bias overvoltage operation
- Quick response time and low power consumption
- ✓ We work to fit ILC requirements
- ? Coming soon...
 - Fabricated chips have already been received
 - Test is under development
- ? In the future...
 - Study of different parameters of the sensor for the forward region tracker
 - Arrays, 3D....

Thank you very much for being such an attentive audience

Questions and comments are welcome

Back-up slides

Universitat de Barcelona

	Technology		
	HV-AMS 0.35 μm	STM 0.13 μm	
PROS	 ✓ Low trap concentration ✓ Reduced dark count ✓ Lower storage data 	 ✓ High density of integration ✓ High speed ✓ No afterpulsing ✓ Lower T dependance 	
CONS	X Reduced speed \rightarrow active recharge X Afterpulsing \rightarrow active quenching X Higher T dependence	 X High dark count → gated mode X High storage data 	
		HV-AMS 0.35µm	
	TWEPP 2010	ICCUB Department of Electronics	

Aachen 20-24 Sep.