

Digital Trigger System for the COMPASS Experiment

I.Konorov, S.Huber, J.Friedrich, M.Krämer, B.Ketzer, D.Levit, A.Mann, S.Paul, TU Munich

Outline

- 1. COMPASS experiment
- 2. Triggering in COMPASS or event selection
- 3. Digital ECAL2 trigger
- 4. TDC based trigger
- 5. Summary and Outlook

COMPASS spectrometer @SPS CERN

TWEPP Aachen

DAQ and Trigger Distribution System

Trigger Control System

- TCS architecture derived from TTC (LHC)
- Built using commercial components
- Trigger distributed synchronously with 38.88 MHz clock

DAQ architecture DATE(ALICE) DAQ software

Maximum trigger rate: 30kHz

20-24 Septembe r 2010

TWEPP Aachen

Игорь Коноров

Triggering or event selection

Two complementary developments for Digital Trigger System :

- 1. Electromagnetic Calorimeter Trigger total energy
- 2. TDC based trigger logic

Target Multiplicity

counter

Beam Veto

SM1

SM2

Beam Killer

ECAL2

ECAL2 readout electronics

MSADC 9U VME card:

- 12 bit ADC
- 77.76 MS/s
- 4+1 FPGA: XC4LX25
- 4x16 = 64 channels
- Debug FPGA interface at P2

Two data streams in FPGAs

- DAQ data stream
- Trigger data stream

Trigger data processor

1. Signal detection:

Threshold 600MeV~0.5% of dynamic range

2. Signal Time

- digital CFD
- TIME IN all channels

3. Amplitude :

- maximum value
- Channel wise normalization i.e. conversion ADC values to Energy

Summation logic

- 77.76 MHz clock common time reference system
- All pipelines synchronized to absolute time
- To avoid mismatch at clock boundaries
- signal amplitude copied to two consecutive pipeline cells

Pipeline summation

Summation of 512 channels

ECAL2 trigger performance during pilot Primakoff run in 2009

ECAL2 trigger configuration in 2009

- Up to 512(32x16) channels or 8 MSADC modules included in Trigger
- Actually used 12x12 hole 2x3
- Two triggers
 >50GeV prescaled by factor two
 >70GeV
- ECAL2 trigger latency: about 100 clock cycles
- Trigger latency increased by 720 ns

EC02P1__ Number of hits vs XY, amp> 20

Trigger rate vs threshold for 12x12

ECAL2 trigger rate vs area

Trigger efficiency

effi70

ECAL2 trigger outcome

- Trigger architecture fulfill requirements for Primakoff
 measurements
- Trigger rate would be too high to include all 3000 channels and to lower threshold
- Pipeline data processing takes more clock cycles than anticipated and cause long latency – ~90 clock cycle

Solutions and further improvements

- Improve trigger selectivity by providing cluster information instead of total sum
- Increase processing speed to 200-300 MHz

TDC based Trigger Logic in FPGA

Motivation

Currently COMPASS trigger electronics based mostly on NIM modules. Substitute NIM logic by flexible FPGA based electronics

What is Trigger logic

Interconnection of si

How Digital Trigger Log

- Synchronous pipe
- Convert analog Ti
- Unified interface : information
- Library componer

How to create FPGA

- Interconnection
- User creates sc
- Software tools

⁻PGA) erface with TDC

Goal: provide a possibility to create Complex Trigger Logic wo FPGA/VHDL knowledge

Trigger logic components

- TDC
- Programmable delays
- AND, OR, NAND with programmable coincidence window(GATE) and master signal
- Time calibration automatic scanning signal timing
- Monitoring
- DAQ interface no need for splitting signals to TDCs
- Inter module interface for scaling up the system

- GUI for creating trigger logic schematic
- Software for generation VHDL code and project files
- Standard Xilinx tools to be used for implementation
- No special knowledge required for using the system

TDC design in Virtex5 FPGA

• Conservative TDC design using built-in SERDES hard cores

• IDELAY

- 64 taps, 78 ps/tap
- Calibrated and independent from process, temperature and voltages
- Bin size 312 ps
- Auto calibration at power up tuning IDELAY
- About 50 TDCs with XC5VLX50

TDC resolution

Time difference between two signals

TDC performance

AND/NAND/OR component

Component parameterization

- Function: AND, NAND, OR
- Number of inputs
- Component Gate
- Offset

Example: (S1 and S2)

Trt - real time Time to processed: Ts1(n) < Trt - OFFSET Ts2(m) < Trt - OFFSET

Coincidence conditions: (Ts2(m) – GATE)< Ts1(n) < Ts2(m)

Generation top level VHDL file

Digital trigger hardware

Status of development

- FPGA TDC implementation
 - completed and tested
- Logic components AND, NAND, OR
 - implemented in VHDL code and simulated
 - To be tested in hardware
- Time calibration
 - Implemented in VHDL
- Software to generate VHDL code
 - ready for XML input
 - GUI in the list to be developed

ECAL digital trigger

- Successful integration ECAL2 digital trigger logic into existing readout electronics – 512 channels
- Problems to extend to 3000 channels due to too high trigger rate
- Studying implementation of more advanced logic to reconstruct clusters, cluster Time and Amplitude

TDC Digital Trigger Logic

- TDC with 110ps resolution and 312 ps/bin
- Concept of programmable TDC based trigger logic
- Basic tools to generate VHDL project

Goal: to complete project by summer 2011