

Study of the electronics architecture for the mechanical stabilization of the quadrupoles of the CLIC linear accelerator

K. Artoos, C. Collette, P. Fernandez Carmona, M. Guinchard, C. Hauviller, S. Janssens, A. Kuzmin, A. Slaathaug CERN, Geneva, Switzerland

Abstract

To reach a sufficient luminosity, the transverse beam and emittances in future linear particle sizes accelerators should be reduced to the nanometer level. Mechanical stabilization of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be make fast incremental orientation to used adjustments with a nanometer resolution. The main requirements for the CLIC stabilization electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop.

6 DAC noise differential output

Requirements Stability CLIC

Einal Eacur	Main boom

10⁻¹

10

PSD of the vibration levels and main noise sources.

Central contro

Control loop delay	Stabilization performance
43µs	100%
80 µs	90%
90 µs	80%
100 μs	60%
130 µs	30%

	Filial Focus	
	quadrupoles	quadrupoles
Vertical	0.2 nm > 4 Hz	1 nm > 1 Hz
Lateral	5 nm > 4 Hz	5 nm > 1 Hz

Component	Delay	
ADC	8 µs	
Electro-optic transducer	100 ns	
Optic fiber transmission	5 μs/Km	
Opto-electric transducer	120 ns	
DAC	3 µs	
Actuator (20nm single step)	1 µs	
Typical catalog delay values for the components		

Achievements

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD

http://clic-stability.web.cern.ch/clic-stability