Design and Verification of a Bit Error Rate Tester in Altera FPGA for Optical Link Developments

Annie C. Xiang, Tingting Cao, Julie Chang, Datao Gong, Chonghan Liu, Tiankuan Liu, Jingbo Ye

Department of Physics, Southern Methodist University, Dallas TX 75275, U.S.A.

cxiang@smu.edu

Introduction

Test Bench

Signal Integrity

Multi-gigabit per second serial optical links are widely conceived to support data transmission in future particle physics experiments. In order to qualify components and verify link designs, their performances need to be evaluated in the laboratory and sometimes in a radiation environment. Bit Error Rate (BER) testing is the fundamental measure of the integrity of each digital communication link. It traditionally requires expensive equipment with table-top testers. With the integration of high-speed SERDES inside FPGA, the embedded solution provides a cheaper alternative with the flexibility of customization to fit field irradiation test scenarios.

We develop a test bench based on Altera's Stratix II GX Transceiver SI Development kit. A parallel to serial PRBS generator and a bit/link status error detector are deployed to characterize serial data link performance. The auto-correlation pattern generates long stress signals without using a lot of memory and enables receiver synchronization without specifying protocol at the physical layer. An error logging FIFO records both bit error data and link operation events. An optimized data flow is established to maximize throughput with shortest dead time. The tester operates up to 6.5 Gbps in 4 duplex channels

- Time (ps) 20.8929 3.92495 74.5784
- FPGA embedded transmitter and receiver are characterized by eye diagram and BER scan measurements.
- Jitter contributions of link components are derived as following

$$DJ_{sys} = DJ_{TX} + DJ_{RX} + DJ_{CH}$$
$$RJ_{sys} = \sqrt{RJ_{TX}^2 + RJ_{RX}^2 + RJ_{CH}^2}$$

Characteristic

- VHDL codes and LabVIEW VIs are developed for the tester. The former governs the data flow logic functions and the transceiver hardware. The latter provides user GUI and remote access of test operations.
- A Pseudo Random Bit Sequence (PRBS) generator produces long • stress patterns without using a lot of memory. PRBS also enables the link re-establishment from transmitter or receiver separately, independent of protocol at the physical layer.
- The tester operates up to 6.5 Gbps in 4 duplex channels with • analog parameters, preemphasis, equalization, DC gain, and VOD adjustable during run-time.

Pattern Generation State Machine	Data Verification State Machine		
<pre>rx_freqlock & rx_patterndetect</pre>	sof received match.cnt = num cycle		

Error Logging

- Commercial BERT IPs generally do not provide enough data acquisition capability for SEU analysis.
- In our tester, we implement an error logging FIFO that records both bit error data and link operation events. Five types of events are logged as shown in the table below.
- The recorded time stamp and XOR pattern of received and expected data can reproduce transmitted and received data, given the pattern is a known PRBS.
- When a link-lost event occurs, it is always time stamped and logged in the reserved portion of the FIFO.
- Currently, the error log FIFO is 4K in length, 12 byte in width, with a throughput of 5Mbps.

Event	Event flag	Time stamp	Event data	Note
SEE	001	48bit	XOR	
Locked	010	48bit	Exp'd data	Error detector
				locked to generator
Link Lost	011	48bit	Exp'd data	Receiver CDR lost
				synchronization
FIFO Full	100	48bit	Exp'd data	Stop recording SEE
				events
FIFO Ready	101	48bit	Exp'd data	Resume recording
				SEE events

Basic BER

The above LabVIEW GUI shows the results of a basic BER vs. optical power. A variable optical attenuator is inserted in the fiber loop to induce transmission degradation.

Irradiation Test

Proton beam: 200 MeV at IUCF.

- Flux: stepped from 1.3×10^7 to 1.4×10^{10} proton/cm²/sec.
- Fluence: 2.3×10¹⁴ proton/cm², corresponding to 13 Mrad(Si) total dose.
- Two serializer chips inside the beam with incidence angle 0, 30, 45 and 60 degrees with respect to the normal of the chip surface. A third chip outside the beam as reference.
- No error was observed with flux up to 3.0×10⁹ proton/cm²/sec. When flux reached 1.4×10¹⁰ proton/cm²/sec, a few errors occurred in both channels under irradiation.
- Taking the operating condition at the ATLAS liquid argon front-end crate location in sLHC as an example, the upper limit of the error cross section translates to a proton induced bit error rate of 6×10^{-18} .

Bit distance	from first err	or to shift b	it error	Entries	22
3	Г]		Mean RMS	24.41 12.3
2.5					
2			Π		
1.5					
0.5					
0 <mark>0 1</mark>	0 20	30	<u>40</u>	50	60

Error Type	Synchronization Error		Single-Bit Error	
Module ID	6	12	6	12
Number of errors	8	17	5	0
σ(cm²)	3.4 x 10 ⁻¹⁴	7.3 x 10 ⁻¹⁴	2.1 x 10 ⁻¹⁴	4.3 x 10 ⁻¹⁵

- Post-test analysis shows that two types of SEE events occurred during high flux irradiation run.
- One type of SEE event is single bit flips, with 0 1 or 1 0transition. The other type of SEE event display itself as exact one

😫 main_radiation_2010_locs1.vi		
<u>File E</u> dit <u>V</u> iew <u>P</u> roject <u>O</u> perate <u>T</u> ools	<u>W</u> indow <u>H</u> elp	
🔿 🕑 🔲 🖬		<u> </u>
STOP	VBERT-A Based on EP2SGX90 SI development board	
word coutner 3075639487 word coutner 2 3075639513 word coutner 3 3075639608 word coutner 4 3075639556	FIFO empty Image: FIFO empty 2 USB Device Description FT_Open FT_Close 1 USB <-> Serial Cable Abert B 0 0 pll_locked rx_sync gen_chk_lck errr_bt1 err_bt2 err_bt3 serial loop back FIFO empty 3 FIFO empty 4 1 image: FT_Close 0 0 0 FIFO length 0 0 0 0 0 0 0 FIFO length 0 0 0 0 0 0 0 FIFO length 0 0 0 0 0 0 0 0 FIFO length 1 1 1 1 1 0 0 0 0 0 FIFO length 0 <t< th=""><th></th></t<>	
word error counter 40 word error counter 2 33 word error counter 3 33 word error counter 4 33 timer	FIFO length 3 FIFO length 4 0 0 event type event type 2 0 0 event type 3 event type 4 0 0 event time stamp close	HI.
3075817077 timer 2 3075817099 timer 3 3075817193 timer 4 3075817140	0 event time stamp 2 Error couter chart 0 event time stamp 3 0 0 0 0 event time stamp 4 0 0 0 0 0 0 0 0 0 0 0 0 0	10
cdr lost counter 0 cdr lost counter 2 0 cdr lost counter 3 0 cdr lost counter 4 0	event data -	33
<	0-1	

The above LabVIEW GUI is implemented during a proton beam test • for a 5Gbps serializer developed at SMU.

- bit shift forward or backward, after a period of error propagation.
- Error propagates are constrained within two frame clocks as shown in the plot above.

Availability and Updates

Summary

Acknowledgement

SEE Analysis

- Reference designs are available for interested users. Please contact corresponding author with a short description of intended application.
- In near future updates, auto-resynchronization will be enabled to avoid needing the attention to reset system during long irradiation runs.
- FIFO data acquisition will be implemented on more interfaces such as Ethernet and high-speed serial port.

- The test bench implements PRBS generator and detector to product long stress patterns and error logging FIFO to record both bit error data and link operation events.
- The test bench is used in a proton test on custom serializer chips • where two types of SEE events are recorded. Besides single bit flip, the other type of error is analyzed and determined to be single bit shift.

The SMU group acknowledge the US-ATLAS R&D program for the upgrade of the LHC, and the US Department of Energy grant DE-FG02-04ER41299. The authors acknowledge Drs. Francois Vasey, Jan Troska and Paschalis Vichoudis at CERN, Alan Prosser and John Chramowicz at FNAL for beneficial discussions.

