Link Model Simulation and Power Penalty Specification of the Versatile Link System

Versatile Link

Annie Xiang, Datao Gong, Lin Zhu, Chonghan Liu, Tiankuan Liu, Jingbo Ye

22 Sept 2010

Southern Methodist University

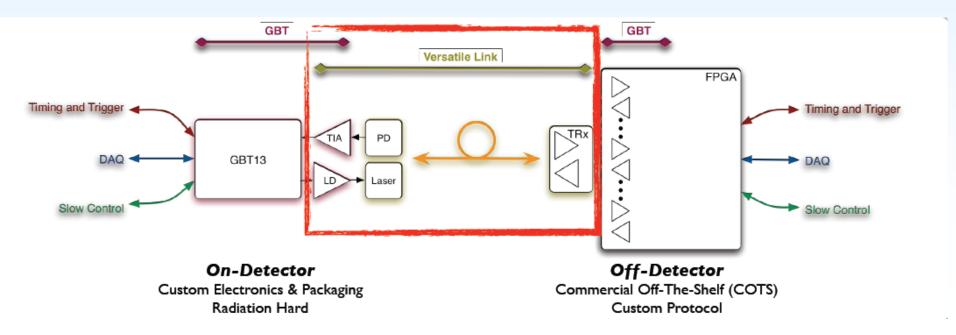
The Question

"I was told that power should be measured in dBm"

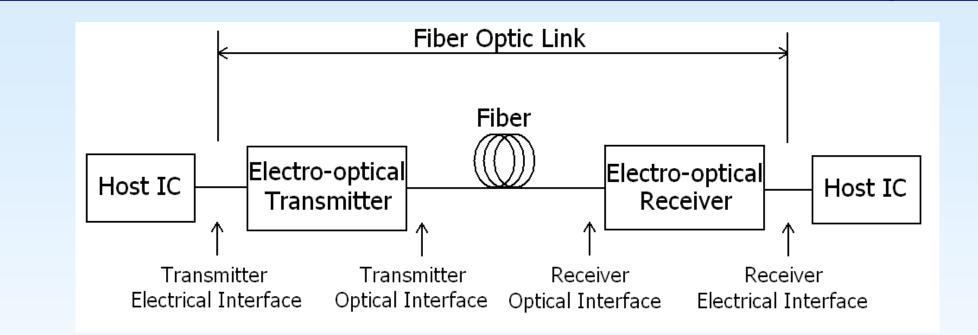
May

"The deficit won't look nearly so bad if we switch to dB"

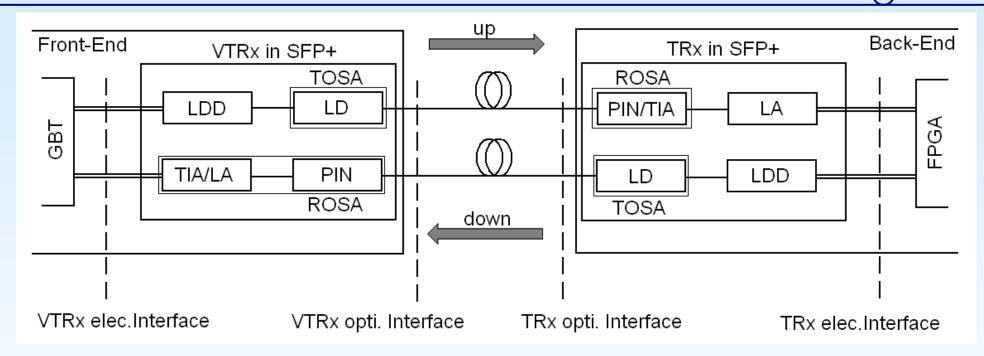
Outline


Introduction

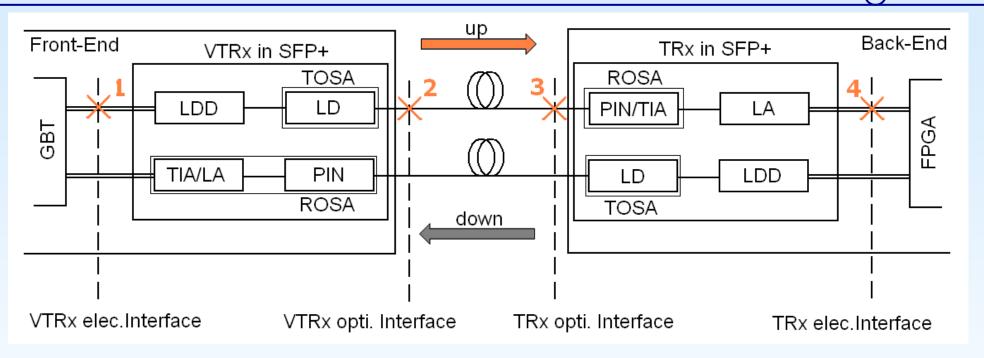
- Versatile Link specification methodology
- 10 Gigabit Ethernet link model
- Link model simulation with Versatile Link parameters
- BER results of reference transceivers
- Irradiation effects of link components
- Versatile Link preliminary power budget
- Summary


Introduction

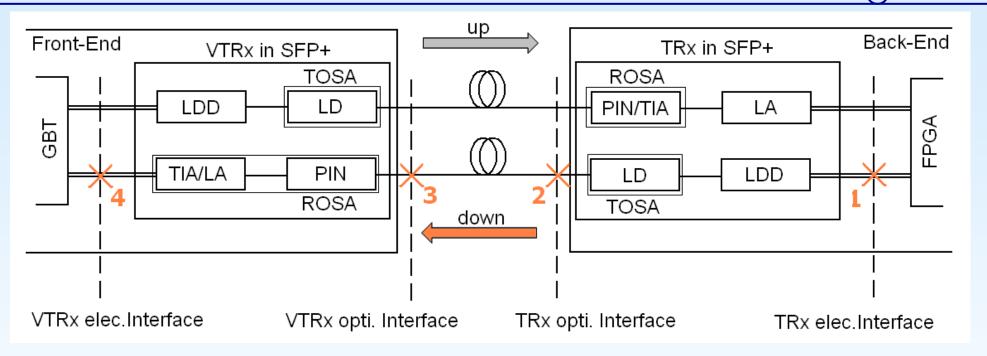
- Versatile link project provides ~ 5Gbps, 150 meters bidirectional optical links at physical layer using lasers, PIN diodes and fibers.
 - In collaboration with the GBT project, which provides serial interface as well as ASICs for front-end component.
- Versatile link project accommodates various configurations: multimode (850nm), single mode (1310nm), point-to-point and point-to-multipoint.
 - Nominal form factor is SFP+. Expansion to other form factors require only marginal efforts.



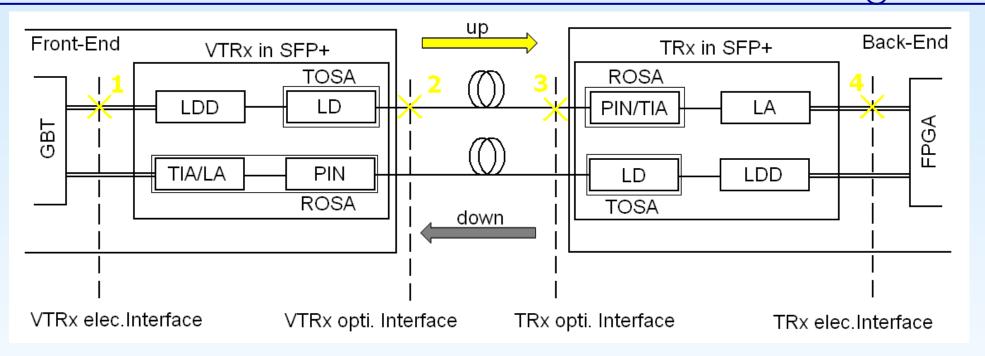
General Optic Link System Definition


- Fiber optic links are typically divided into functional blocks and interfaces similar to the one shown above.
- System specifications apportion power and jitter budget along link components to ensure BER < 1E-12 performance at target data rate, link length, across operating temperature range and throughout life cycle.

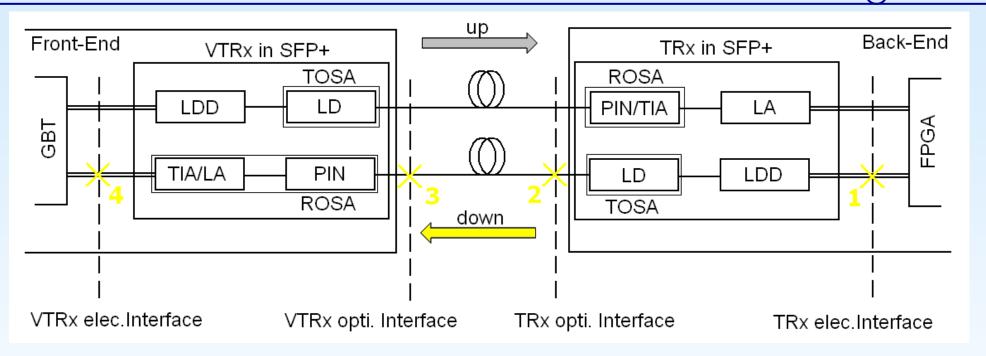
🗱 Fermilab


- In the Versatile Link system, the VTRx resides on-detector and is custom designed. Fiber and back-end TRx will be commercially sourced.
- There are four configurations that need to be specified individually.
 MM_VTx_Rx, MM_Tx_VRx, SM_VTx_Rx, SM_Tx_VRx

Fermilab Versatile Link

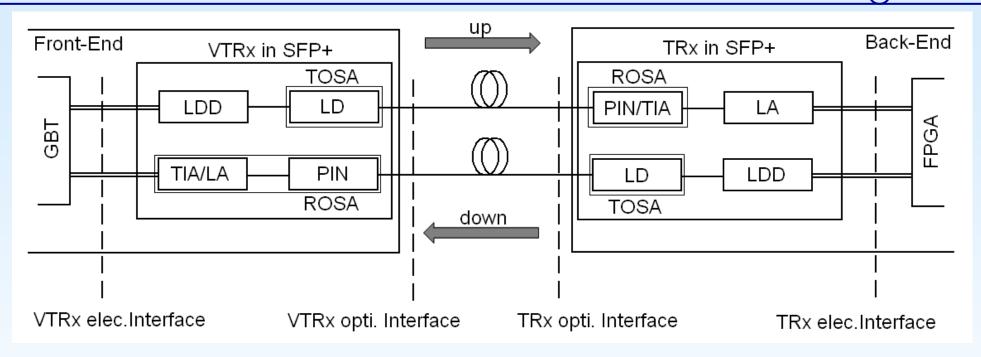

- In versatile link system, VTRx resides on detector and are custom designed. Fiber and TRx will be commercially sourced.
- There are four general configurations that need to be specified individually.
 - MM_VTx_Rx, MM_Tx_VRx, SM_VTx_Rx, SM_Tx_VRx

🛟 Fermilab


- In versatile link system, VTRx resides on detector and are custom designed. Fiber and TRx will be commercially sourced.
- There are four general configurations that need to be specified individually.
 - MM_VTx_Rx, MM_Tx_VRx, SM_VTx_Rx, SM_Tx_VRx

Fermilab Versatile Link

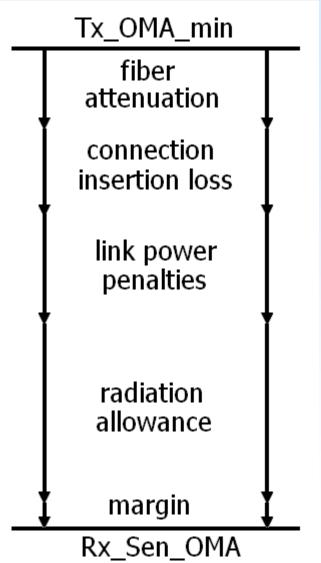
- In versatile link system, VTRx resides on detector and are custom designed. Fiber and TRx will be commercially sourced.
- There are four general configurations that need to be specified individually.
 - MM_VTx_Rx, MM_Tx_VRx, SM_VTx_Rx, SM_Tx_VRx


🛟 Fermilab

- In versatile link system, VTRx resides on detector and are custom designed. Fiber and TRx will be commercially sourced.
- There are four general configurations that need to be specified individually.
 - MM_VTx_Rx, MM_Tx_VRx, SM_VTx_Rx, SM_Tx_VRx

🛟 Fermilab

Versatile Link Specification Methodology

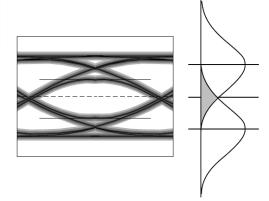

- At system level, power and jitter need to be budgeted for every specific link configuration.
 - Constrain: front-end components are known to exhibit power degradation due to radiation.
 - Solution: test front-end components, simulate link impairments and qualify back-end components.
 - Goal: budget overall link power based on availability and cost efficiency.

🖧 Fermilab

Power Budget Definition

- Defining a link power budget involves deciding transmit power, receiver sensitivity with constrains on fiber attenuations, insertion losses, and various penalties.
- VL needs to assign radiation allowance.
- Several tradeoffs are possible
 - Link penalties are related to parameters such as center wavelength, spectral width, rise/fall time etc.
 - Improvement of Tx power or Rx sensitivity can be achieved.
 - Higher level system requirement may be relaxed.

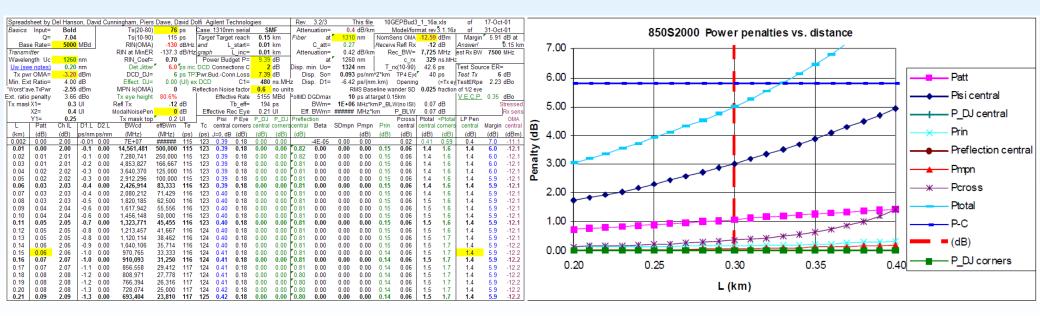
Power Budget Example


- Example budgets for
 300m OM3 (2000MHz.km)
 - 10km SMF28 (1E6MHz.km)
- Fiber attenuation
 - 3.5 dB/km at 850nm
 - 0.4 dB/km at 1310nm
- Insertions loss
 - 1.5 dB for up to 3 connectors at 850nm
 - 2.0 dB for up to 4 connectors at 1310 nm
- Un-distorted transmitter and un-equalized receiver
- Link penalties arise due to noise and dispersion from transceiver and fiber interactions.

	10GBASE-S	10GBASE-R				
Tx_OMA (dBm)	-3.8	-3.2				
S_OMA (dBm)	-11.1	-12.6				
Power	7.3	9.4				
Budget (dB)						
Attn.	1.1	4.2				
Insert.	1.5	2.0				
Allocation for	4.7	3.2				
Penalties						
margin	0.0	0.0				

10Gigabit Ethernet Link Model

- A 10 Gigabit Ethernet link model has been developed by IEEE as a tool to facilitate optical physical layer specification.
 - It is open source, peer reviewed
 - The latest version (10GEPBud3_1_16a.xls) is available at http://www.ieee802.org/3/ae/public/adhoc/serial_pmd/documents/
- The model assumes Gaussian impulse responses for laser and fiber, and raised cosine response for the receiver.
- The model simulates link impairments as noise expansion and vertical eye closure, and calculates power penalties at a target BER of 1E-12.
- Link impairments phenomena included: inter-symbol-interference (ISI), mode partition noise (MPN), modal noise (MN), relative intensity noise (RIN), reflection, duty-cycle-distortion (DCD) and interaction correction.

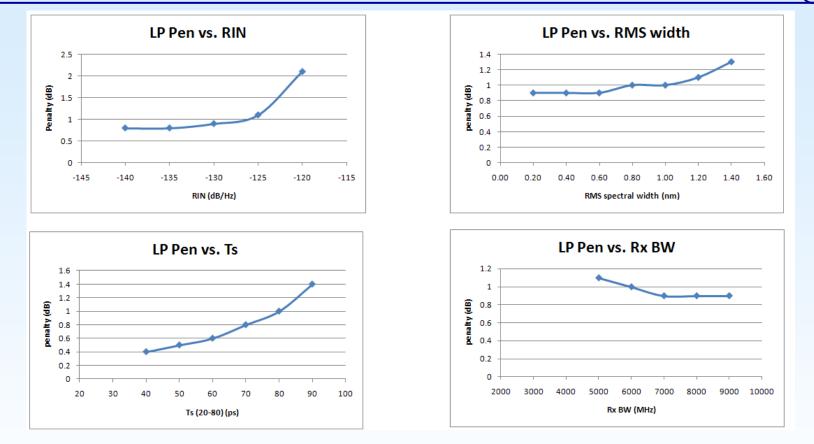


$$\begin{split} P_{isi} &= 10 \cdot \log \frac{1}{2 \cdot h(0) - 1} \\ ht &= \frac{1}{2} \cdot erf\left(\frac{2.563}{2 \cdot \sqrt{2}}\right) \cdot \frac{\left(2 \cdot t + T_{eff}\right)}{T_c} - erf\left(\frac{2.563}{2 \cdot \sqrt{2}}\right) \cdot \left(\frac{2 \cdot t - T_{eff}}{T_c}\right) \\ P_{mpm} &= 10 \cdot \log \frac{1}{\sqrt{1 - \left(Q \cdot \sigma_{mpm}\right)^2}} \\ \sigma_{mpn} &= \frac{k_{OMA}}{\sqrt{2}} \cdot \left\{1 - \exp\left[-\left(\pi \cdot B_{eff} \cdot D \cdot L \cdot \sigma_{\lambda}\right)^2\right]\right\} \end{split}$$

10Gigabit Ethernet Link Model

- The model is build in excel spreadsheet. The outputs are the various penalties as functions of link length.
 - Channel is nonlinear with regard to data rate and length.
- The model has been validated by experiments in multiple labs
 - G. Agrawal et al,1988

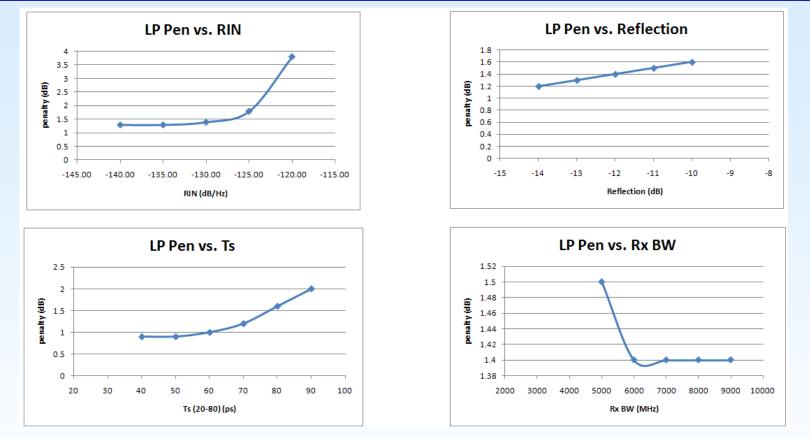
Versatile Link Model Key Parameters



- The link model is populated with key parameter values to represent the Versatile Link operation conditions.
 - MM_VL_proposal
 - Signal Rate: 5 Gbps
 - Target length: 150 m
 - Center wavelength: 850 nm
 - RMS spectral width: 0.49 nm
 - Ts (20-80): 75ps
 - Max RIN12OMA: -130 dB/Hz
 - RIN coefficient: 0.70
 - MPN coefficient: 0.30
 - Reflection coefficient: 0

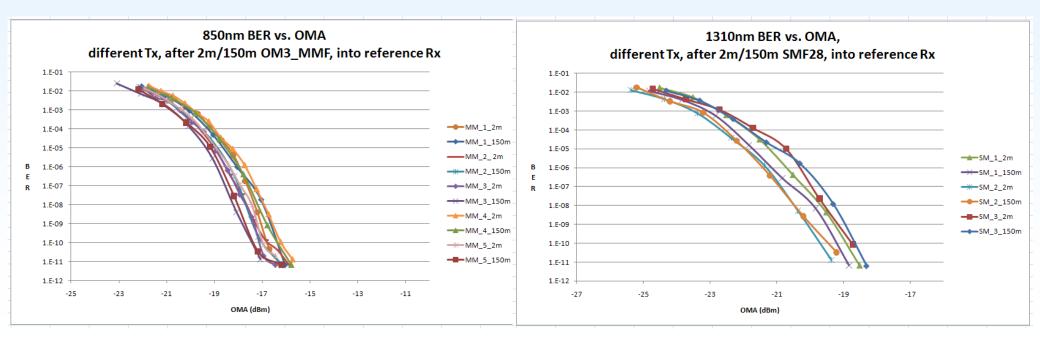
- SM_VL_proposal
 - Signal Rate: 5 Gbps
 - Target length: 150 m
 - Center wavelength: 1310 nm
 - RMS spectral width: 0.20 nm
 - Ts (20-80): 75ps
 - Max RIN12OMA: -130 dB/Hz
 - RIN coefficient: 0.70
 - MPN coefficient: 0
 - Reflection coefficient: 0.6
- Propose to allocate 1.0 dB for MM and 1.5 dB for SM versatile link impairments.

MM_VL Sensitivity Charts



 MM_VL is sensitive to input rise/fall time, insensitive to other parameters within bandwidth limit

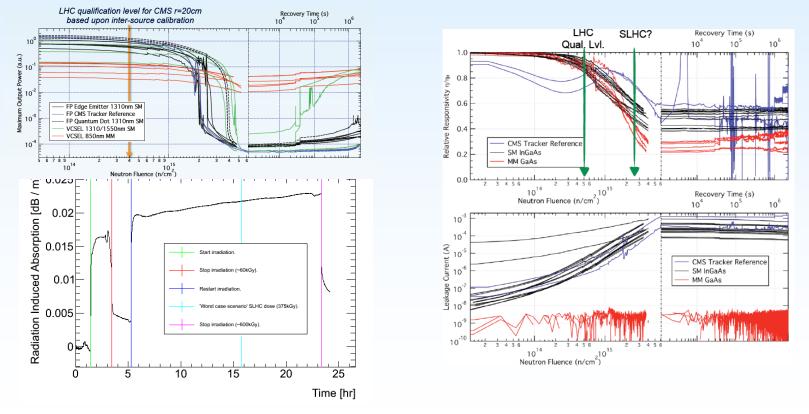
SM_VL Sensitivity Charts



 SM_VL is sensitive to reflection and rise/fall time. In-sensitive to other parameters within a broader bandwidth limit


BER with reference transceivers

- Power penalty manifest itself as the horizontal shift of the BER curve.
- Several commercial MM/SM transceiver modules are tested for their relative BER differences.
 - Modules from different vendors are tested at 5Gbps
 - Different Tx over 2/150 meter MM/SM fibers into reference Rx.
 - Power penalty differences are below 1.5dB.
 - Differences between modules are larger than differences between link lengths.



🛠 Fermilab

Irradiation effects of link components

- InGaAs PIN diodes show increased leakage current. Both InGaAs and GaAs PIN didoes show a degradation in responsivity. Neither effect anneals.
- Different fiber types degrade differently. Radiation resistant candidates performance most optimistic.

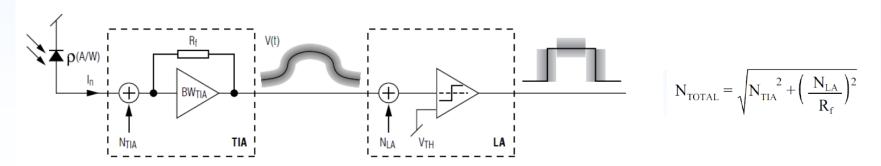
Source: J. Troska et al., 2009; T. Huffman et al., 2010

SMU

CERN

Fermilab Versatile Link

Versatile Link Power Budget



configuration/parameter	MM_VTx_Rx	MM_Tx_VRx	SM_VTx_Rx	SM_Tx_VRx
Transceiver power level				
Tx OMA min	-3.8 dBm	-3.8 dBm	-3.2 dBm	-3.2 dBm
Rx Sensitivity OMA max	-11.1dBm	-11.1dBm	-12.6 dBm	-12.6 dBm
Power budget (Tx - Rx)	7.3 dB	7.3 dB	9.4 dB	9.4 dB
Fiber attenuation	0.6 dB	0.6 dB	0.1 dB	0.1 dB
Connection and splice loss	1.5 dB	1.5 dB	2.0 dB	2.0 dB
Link penalties	1.0 dB	1.0 dB	1.5 dB	1.5 dB
Tx irradiation degradation	-	-	-	-
Rx irradiation degradation	-	7.0 dB	-	9.0 dB
Fiber irradiation degradation	1.0 dB	1.0 dB	-	-
Margin	3.2 dB	-3.8 dB	5.8 dB	-3.2 dB

- Tx power, Rx sensitivity, fiber attenuation, insertion loss assumptions are first aligned with industry examples.
- Link penalties result from simulation.
- Extrapolated sLHC irradiation degradation deduced.
- Two downlinks run deficit.

- Power margin can be picked up from transmitter.
 - Tx power is always measured.
 - Tx power is generally balanced by the need to meet eye safety.
- Power margin can also be picked up from receiver.
 - Rx sensitivity measurement is more time consuming.
 - VRx sensitivity will be measured.
 - GBTIA input-referred noise < 20µA</p>
 - Rx sensitivity of -15 dBm (MM) and -17 dBm (SM)

[•] Source: Maxim-IC, HFAN 3.0.0

configuration/parameter	MM_VTx_Rx	MM_Tx_VRx	SM_VTx_Rx	SM_Tx_VRx
Transceiver power level				
Tx OMA min	-3.8 dBm	-2.0 dBm	-3.2 dBm	-2.8 dBm
Rx Sensitivity OMA	-11.1dBm	-13.1dBm	-12.6 dBm	-15.4 dBm
Power budget (Tx - Rx)	7.3 dB	7.3 dB	9.4 dB	9.4 dB
Fiber attenuation	0.6 dB	0.6 dB	0.1 dB	0.1 dB
Connection and splice loss	1.5 dB	1.5 dB	2.0 dB	2.0 dB
Link penalties	1.0 dB	1.0 dB	1.5 dB	1.5 dB
Tx irradiation degradation	-	-	-	-
Rx irradiation degradation	-	7.0 dB	-	9.0 dB
Fiber irradiation degradation	1.0 dB	1.0 dB	-	-
Margin	3.2 dB	0.0 dB	5.8 dB	0.0 dB

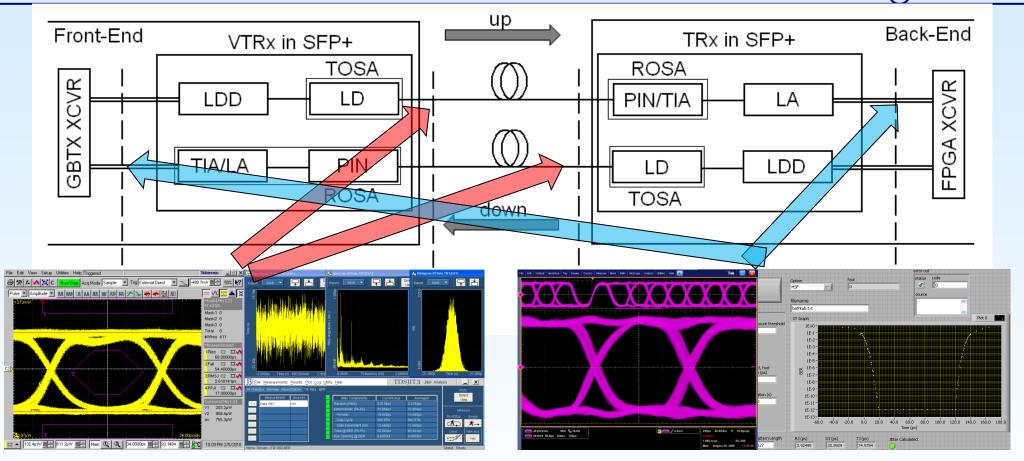
• All links now meet budget.

• Excess uplink power budget allows for higher data rate or longer length.

Power budget of versatile link is achievable

- The 10Gigabit Ethernet link model has been used with link parameters to provide guidance on setting values of key specifications
- Measurement results from reference transceivers conform with simulation results
- In the configurations where extra power is needed, budget can be compensated from back-end transmitter (more stringent specification) and front-end receiver (design targeted TIA specification) with reasonable constrains
- Establish power penalty specification and adding impairments from the link model is a good practice to follow. It gives us confidence that the system will work on a large scale.
- Still need to review:
 - Extending jitter budget into link model
 - Measurement results from versatile transceivers

Thank you for your attention



SMU

CERN

🛟 Fermilab

Versatile Link Specification Methodology

- At the component level, VTRx and TRx need to be tested for
 - Function: interface with GBT and FPGA
 - Signal Integrity: amplitude, noise, timing, jitter and received BER
- Tentative specifications are adapted/modified from 802.3ae, FC-PI-4 and SFF-8431 for electrical and optical interfaces.

🛟 Fermilab

Versatile Link Model MM Worksheet

																				_		Inp	ut p	ort	ion
Spreads	heet by D	Del Hans	on, Da	vid Cunr	ningham, Piers	Dawe, D	avid Do	olfi Aç	gilent Te	chnolog	gies		Rev.	3.2/3		his file	10G	EPBud3	1_16a	a.xls	of	17-0ct	-01		
Basics	Input=	Bold			Ts(20-80)	76	ps	Case	850nm	1 serial	new	MMF		nuation=	3.5	dB/km	N N	Nodel/forr	mat rev	v <u>3.</u> 1.16a	- Par	.am	dB at	rs i	n bo
		7.04			Ts(10-90)	115			et Targe	t reach			Fiber				NomSe	ens OMA	-11.10	<mark>0</mark> dBm	Nargin	0.00	dB at		
	e Rate=	5000	MBd]	RIN(OMA)		dB/Hz			_start=				C_att=	1.00			eRefl Rx			Answerl		0 3 km		
Transmit			,		RIN at MinER					L_inc=			Atte	nuation=		dB/km	Re	_			est Rx BW	7500	MHz		
Wavelen			nm		RIN_Coef=					lget P=				at			Į	c_rx		9 ns.MHz			L		
Uw (see		0.23			Det.Jitter					ctions C				min. Uo=	1320			x(10-90)			Test Sour				
	r OMA=		dBm		DCD_DJ=				udCon			dB		isp. So=				TP4 Ey€		0 ps	Test Tx	6.5			
Min. Ext		3.00		NЛ	Miffect. DJ=	0.00	(UI) ex			C1=		ns.MH		isp. D1=				Opening		· ·	TestERpe		dBo	1	
"Worst"av			dBm					eflecti		e factor		no unit	1				eline wa	nder SD	0.025		of 1/2 eye				
Ext. ratio		4 78	dBo	L	Tx eve height	80.6%		l		ve Rate		MBd	(n)	ot in use)	10		1				<u>V.E.C.P.</u>				
Tx masl)		U.	en i	τer	R850n	12				Tb_eff=				BWm=				N(no ISI)	0.07				Stressed	1	
	X2=			N			dB	Effe		ec Eye				f. BWm=	2.0E+03	MHz*k	m	P_BLW	0.07				Rx sens		
Ļ,	Y1=	0.25		021	Tx mask top			Tc		P Eye				ction Rete	SDm	Desca	Dein			<ptotal< td=""><td>LP Pen</td><td>Marcin</td><td>OMA</td><td></td><td></td></ptotal<>	LP Pen	Marcin	OMA		
	Patt	ChIL	D1.L		BWcd	effBWm	Te						1	I Beta	SDmpn	-				l corners	1	Margin			
(km)	(dB)	(dB)		ps/nm	(MHz)	(MHz)	(ps)		J=0, dB		(dB)	(dB)	(dB)	45.00	0.00	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dBm)		
0.002	0.01	1.51		0.00	3E+06	######	115	122	0.38	0.18	0.00	0.00	0	-1E-03	0.00	0.00	0.44	0.03	0.72	0.90	0.7	5.1	-5.6		
0.01	0.04	1.54	-1.2		· · · · · · · · · · · · · · · · · · ·	200,000		122	0.38	0.18	0.00	0.00	0	-0.01	0.00	0.00	0.11	0.05	0.9	1.0	0.8	4.9	-5.8		
0.02	0.07	1.57 1.61	-2.4	0.00	273,787	100,000		122	0.38	0.18	0.00	0.00	0	-0.01 -0.02	0.00	0.00	0.11 0.11	0.05	0.9	1.1	0.8 0.8	4.9	-5.8		
0.03	0.11	1.61 1.64	-3.5		182,524 136.893	66,667 50,000	116	122 122	0.38 0.38	0.18	0.00	0.00	0	-0.02	0.00	0.00	0.11	0.05	0.9 1.0	1.1 1.2	0.8	4.9 4.8	-5.8		
0.04	0.14 0.18	1.64	-4.7		136,893	50,000 40,000	116 116	122	0.38	0.18 0.18	0.00	0.00		-0.02	0.00	0.00	0.11	0.05	1.0	1.2 1.2	0.8	4.8	-5.9 -5.9		
0.05	0.18	1.68	-5.9		91,262	40,000 33.333	116	123	0.39	0.18	0.00	0.00	r ö	-0.03 - 0.03	0.00	0.00	0.10	0.05	1.0	1.2	0.8	4.8	-5.9 - 5.9		
0.00	0.22	1.72	-1.1	0.00	78.225	28.571	117	123	0.39	0.18	0.00	0.00	r o	-0.03	0.00	0.00	0.10	0.05	1.1	1.3	0.8	4.7	-6.0		
0.08	0.29	1.79	-9.4		68,447	26,571	117	123	0.40	0.10	0.00	0.00	r ő	-0.04	0.00	0.00	0.10	0.05	1.1	1.3					
					60,841	22,222	118	124	0.41	0.18	0.00	0.00	r ő	-0.04	0.00	0.00	0.10	0.05	1.2	1.4	AG	Jre	gậte	7	
et	li li 🖁 🕅	i i ĝ i	ng	0.00	54,757	20.000	118	124	0.41	0.18	0.00	0.00	r ő	-0.05	0.00	0.00	0.09	0.05	1.2						
0.11	0.40	1.90		0.00	49,779	18.182	119	125	0.42	0.18	0.00	0.00	Ň	-0.06	0.00	0.00	0.09	0.05	1.3	1.4 1.5	Pdŵe	₽Ţ₽	ena	ITY	
150) me	ter	-14.1		45,631	16,667	119	126	0.44	0.18	0.00	0.00	Ő	-0.07	0.00	0.00	0.09	0.05	1.3	1.5	0.9	4.5	-6.1)
0.13	0.47	1.97	-15.3		42,121	15,385	120	127	0.45	0.19	0.00	0.00	ŏ	-0.07	0.00	0.00	0.09	0.05	1.4	1.5	0.0	4.4	-6.2		/
0.14	0.51	2.01	-16.5		39,112	14,286	121	127	0.46	0.19	0.00	0.00	Ŏ	-0.08	0.00	0.00	0.08	0.05	1.4	1.6	0.9	4.4	-6.2		
0.15	0.54	2.04	-17.7		36,505	13,333	122	128	0.48	0.19	0.00	0.00	Ő	-0.08	0.00	0.00	0.08	0.05	1.5	1.6	0.9	4.3	-6.2		
0.16	0.58	2.08	-18.8		34,223	12,500	122	129	0.49	0.19	0.00	0.00	0	-0.09	0.00	0.00	0.08	0.05	1.5	1.7	0.9	4.3	-6.3		
0.17	0.62	2.12	-20.0	0.00	32,210	11,765	123	130	0.51	0.19	0.00	0.00	0	-0.09	0.00	0.00	0.08	0.05	1.5	1.7	0.9	4.3	-6.3		
0.18	0.65	2.15		0.00	30,421	11,111	124	130	0.52	0.19	0.00	0.00	0	-0.10	0.00	0.00	0.08	0.05	1.6	1.8	0.9	4.2	-6.4		
0.19	0.69	2.19		0.00	28,820	10,526	125	131	0.54	0.19	0.00	0.00	0	-0.11	0.00	0.00	0.07	0.05	1.7	1.8	1.0	4.1	-6.4		
0.20	0.72	2.22	-23.6	0.00	27,379	10,000	126	132	0.56	0.20	0.00	0.00	0	-0.11	0.00	0.00	0.07	0.05	1.7	1.9	1.0	4.1	-6.4		
0.21	0.76	2.26	-24.7		26,075	9,524	127	133		0.20	0.00	0.00	0	-0.12	0.00	0.00	0.07	0.05	1.8	2.0	1.0	4.0	-6.5		

Propose to allocate 1.0 dB for MM versatile link impairments

Tε

ÉRN

🛟 Fermilab

Versatile Link Model SM Worksheet

	SMU
	Fermilab
<u>}</u>	Versatile Link

Spreads	heet by D		on, Da	vid Cu	nningham, Piers	Dawe, Da	avid D	olfi Ag	jilent Te	echnolog	<u> </u>		Rev.	3.2/3	-	his file		GEPBud3			of	17-Oct	
Basics	Input=	Bold			Ts(20-80)	76	ps		1310nn			MF		uation=		dB/km		Model/for				31-Oct	
	Q=	7.04			Ts(10-90)	115	ps	Targe	t Targe	t reach	0.15	km	Fiber	at	1310			ens OMA		dBm	Margin	5.91	
Bas	e Rate=	5000	MBd		RIN(OMA)		dB/Hz			_start=	0.01	km		C_att=	0.27			∕∈Refl Rx		dB	Answer!		0.15 km
Transm	itter				RIN at MinER	-137.3	dB/Hz			L_inc=	0.01		Atten	uation=		dB/km	R	ec_BW=			est Rx BW	7500	MHz
Waveler	ngth Uc	1260			RIN_Coef=	0.70	_		ver Bud		9.39			at				c_rx		ns.MHz			
Uw (se	e notes)	0.20			Det.Jitter				Connec			dB		nin. Uo=	1324			rx(10-90)	_		Test Sou		
	r OMA=	-3.20			DCD_DJ=				udCon		7.39			p. So=	0.093	ps/nm ²	2*km	TP4 Eye	40	ps	Test Tx	-	dB
Min. Ex	t Ratio=	4.00			Effect. DJ=	0.00	(UI) ex			C1=		ns.MH		p. D1=		ps/(nm		Opening			TestERpe		dBo
"Worst"a	ve.TxPwr	-2.55			MPN k(OMA)	0	F	eflection	on Nois			no unit						ander SD	0.025	fraction	of 1/2 eye		
Ext. ratio		3.66			Tx eye height	80.6%				ve Rate			PoIMD D)GDmax		ps at ta					<u>V.E.C.P.</u>	0.35	dBo
Tx mas		0.3			Refl Tx	-12				Tb_eff=	194			BWm=				W(no ISI)					Stressed
	X2=	0.4	UI		ModalNoisePen		dB	Effe	ctive R		0.21				######	MHz*k	m	P_BLW	0.07				Rx sens
	Y1=	0.25			Tx mask top	0.2	_	_	Pisi	P Eye	P_DJ		Preflect			-		Pcross		<ptotal< td=""><td>LP Pen</td><td></td><td>OMA</td></ptotal<>	LP Pen		OMA
	Patt	Ch IL		D2.L	BWcd	effBWm	Te			corners				Beta	SDmpn		Prin	central		corners		-	central
(km)	(dB)			ps/nm		(MHz)	(ps)		J=0, dB		(dB)	(dB)	(dB)			(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dBm)
0.002	0.00	2.00	-0.01		7E+07	######	115	123	0.39	0.18	0.00	0.00		-4E-05	0.00	0.00		0.02	0.41	0.59	0.4	7.0	-11.1
0.01	0.00	2.00	-0.1	0.00	14,561,481	500,000	115	123	0.39	0.18	0.00	0.00	0.82	0.00	0.00	0.00	0.15	0.06	1.4	1.6	1.4	6.0	-12.1
0.02	0.01	2.01	-0.1	0.00	7,280,741	250,000	115	123	0.39	0.18	0.00	0.00	0.82	0.00	0.00	0.00	0.15	0.06	1.4	1.6	1.4	6.0	-12.1
0.03	0.01	2.01	-0.2	0.00	4,853,827	166,667	115	123	0.39	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.4	1.6	1.4	6.0	-12.1
0.04	0.02	2.02	-0.3	0.00	3,640,370	125,000	115	123	0.39	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.4	1.6	1.4	6.0	-12.1
0.05	0.02	2.02	-0.3	0.00	2,912,296	100,000	115	123	0.39	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.4	1.6	1.4	5.9	-12.1
0.06	0.03	2.03	-0.4	0.00	2,426,914	83,333	116	123	0.39	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.4	1.6	1.4	5.9	-12.1
0.07	0.03	2.03	-0.4	0.00	2,080,212	71,429	116	123	0.40	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.4	1.6	1.4	5.9	-12.1
0.08	0.03	2.03	-0.5	0.00	1,820,185	62,500	116	123	0.40	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.5	1.6	1.4	5.9	-12.1
0.09	0.04	2.04	-0.6	0.00	1,617,942	55,556	116	123	0.40	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.5	1.6	1.4	5.9	-12.1
0.10	0.04	2.04	-0.6	0.00	1,456,148	50,000	116	123	0.40	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.5	1.6	1.4	5.9	-12.1
0.11	0.05	2.05	-0.7	0.00	1,323,771	45,455	116	123	0.40	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.5	1.6	1.4	5.9	-12.1
0.12	0.05	2.05	-0.8	0.00	1,213,457	41,667	116	124	0.40	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.5	1.6	1.4	5.9	-12.1
0.13		2.05 2.06	-0.8	0.00	1,120,114	38,462	116	124	0.40	0.18	0.00	0.00	0.81	0.00	0.00	0.00	0.15	0.06	1.5 1.5	1.7 1.7	1.4	5.9 5.9	-12.1
0.14	0.06		-0.9	0.00	1,040,106	35,714	116	124	0.40	0.18			0.81		0.00	0.00					1.4		-12.2
0.15 0.16	0.06	2.06 2.07	-1.0 - 1.0	0.00 0.00	970,765 910,093	33,333 31,250	116 116	124 124	0.41 0.41	0.18 0.18	0.00 0.00	0.00 0.00	0.81 0.81	0.00 0.00	0.00 0.00	0.00 0.00	0.14 0.14	0.06 0.06	1.5 1.5	1.7 1.7	1.4 1.4	5.9 5.9	-12.2 - 12.2
0.16	0.07		-1.0	0.00		29.412	110	124	0.41	0.18	0.00	0.00	0.81	0.00		0.00	0.14	0.06	1.5	1.7	1.4	5.9	-12.2
0.17	0.07	2.07 2.08	-1.1	0.00	856,558	29,412	117	124	0.41	0.18	0.00	0.00	0.81	0.00	0.00 0.00	0.00	0.14	0.06	1.5	1.7	1.4	5.9	-12.2
0.18	0.08	2.08	-1.2	0.00	808,971		117	124	0.41	0.18	0.00	0.00	0.80	0.00	0.00	0.00	0.14	0.06	1.5	1.7	1.4	5.9	-12.2
0.19	0.08	2.08	-1.2	0.00	766,394 728.074	26,316 25.000	117	124	0.41	0.18	0.00	0.00	0.80	0.00	0.00	0.00	0.14	0.06	1.5	1.7	1.4	5.9	-12.2
0.20	0.08	2.08 2.09	-1.3	0.00	693.404	25,000 23,810	117	124	0.42	0.18	0.00	0.00	0.80	0.00	0.00	0.00	0.14 0.14	0.06	1.5	1.7	1.4 1.4	5.9 5.9	-12.2 - 12.2
0.21	0.05	2.03	-1.0	0.00	033,404	23,010	117	125	0.42	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.00	1.5	1.7	1.4	5.5	-12.2

Propose to allocate 1.5 dB for SM versatile link impairments