

Wideband pulse amplifier for the integrated camera of the Cherenkov Telescope Array

E. Delagnes^a, A. Sanuy^b, <u>D. Gascón^b</u>

on behalf of the NECTAr collaboration

saclay

Irfu /CEA/Saclay ^a

LPNHE / Paris

LPTA / Montpellier

ICC / Universitat Barcelona (ICC-UB) ^b

Institut de Ciències del Cosmos

TWEPP - Aachen - September 21th 2010

Outlook

I. Introduction

- II. Basic building blocks
- III. First prototype: ACTA
- IV. Second prototype: ACTA3
- V. Summary

I. Introduction: Cherenkov telescopes

I. Introduction: the Cherenkov Telescope Array (CTA) observatory

I. Introduction: the Cherenkov Telescope Array (CTA) observatory

• How CTA aims to extend energy range and increase sensitivity?

Artist view of CTA-North

Kari Nilsson

- Large array (>1 km²) of Cherenkov telescopes (50-100)
- Different sizes: dish from 6 to 24 m
- Camera and electronics must be optimized in terms of
 - Performance
 - Cost and reliability: integration

I. Introduction: the camera

Front end electronics:

- Pixel: fast phototosenrors
 - High QE PMTs // SiPM
- Modularity: cluster of 7/8 pixels
- Front end electronics in the camera
- Digitization & trigger

• Huge dynamic range: 16 bits

- Signals up to 6 Kphe
- Single phe resolution for calibration:
 - Series noise < $3 \text{ nV}/\sqrt{Hz}$

Dual gain (12 bit) channels

• High BW (>300 MHz):

- Night Sky Background:
 - Up to 100 MHz
- Minimize integration time

I. Introduction: readout electronics

- Analogue memory + slow digitization
 - Sample and hold in a capacitor array
 - High speed: up to 3 GS/s (> 300 MHz analogue BW)
 - Slow digitization for selected events
 - Trigger system
 - Custom ASICs developed in the community
 - Domino Ring Sampler (DRS) by PSI
 - For CTA: DRAGON poject
 - Sampling Analogue Memory (SAM) by Irfu
 - For CTA: NECTAr project
- Flash ADCs
 - Commercial component
 - Limited to 500 MS/s
 - High Cost and power consumption
 - For CTA: FlashCam collaboration
 - No trigger needed

I. Introduction: NECTAr (Irfu/Saclay, LPNHE, LPTA and ICC-UB)

8

- From HESS chip (SAM: only analogue memory) to a single chip integrating full acquisition channel:
 - NECTAr chip: COST & RELIABILITY

g

• From HESS chip (SAM: only analogue memory) to a single chip integrating full acquisition channel:

Accuracy	1-3 %	Chip 1 = full integrated acquisition
Bandwidth	400 MHz	channel Slow Control interface
Output range	1.5 to 2 Vpp	SCA + ADC Controller RO Controller
Gain	20	+++++++ SAM (extended to ADC Digital speed
Temp. Coeff.	< 0.05 %/K	2048 cells ?) ++++++
Power	< 50 mW	
Slew rate	1500 V/µs	- Input signal amplif. (2 gains).
Series noise	< 3 nV/√Hz	 Analog memory (depth adapte
Fully differential		- ADC Wilky (already exists),

- Sérializer ~300Mb/s.

AMS CMOS 0.35 um

• SAM technology

I. Introduction

II. The circuit

- III. First prototype: ACTA
- IV. Second prototype: ACTA3
- V. Summary

II. The circuit: classical topologies for linear voltage amplifiers

Global feedback

- Good linearity
- OpAmp with GBW > 8 GHz !!
 - Reported: < 1 GHz in 0.35 um</p>
 - Very difficult even with VDSM

- Limited linearity
- Dynamic of 2 V impossible @ 3.3 V

II. The circuit: new approach

- Dedicated CMOS topologies
- Local feedback
 - Linearized HF CMOS transconductor

- Classical solution with global feedback looks impossible
 - Max. OpAmp GBW 500 MHz to 1 GHz (need > 5GHz)
- HF transconductors with linearisation by local feedback

	Lin. Err. [%]	BW [MHz]	Noise [nV /√Hz]	Bias current [mA]	Comments
Simple dif. Pair	2	1000	2.2	4.5	W/L limited by linearity
Dif. Pair with degeneration	1	1000	2.7	4.5	Limited range
Cross coupled (XC) mismatched	3	2000	5.7	4.5	Low Gm/Ibias
XC with offset Wang-Guggenbuhl	0.5	850	3.2	8	High consumption
XC with bias offset Szczepanski	0.5	1000	2.5	4.5	Accurate control of Gm with bias offset voltage
Adaptative Nedungadi- Viswanathan	Small range	1000	2.5	7.5	Small linear range even for high bias current

II. The circuit: bias-offset cross coupled differential pair

- Completely linear
 - First order:
 - Linear using square law MOS: saturation
 - Tuneable gain
- Second order effects on linearity
 - Channel length modulation ————> Control V_{DS} variations: next slides

 $\left| \boldsymbol{I}_{oD} = \boldsymbol{K} \boldsymbol{V}_{b} \boldsymbol{V}_{iD} \right| \qquad \boldsymbol{K} = \frac{1}{2} \, \mu \boldsymbol{C}_{ox} \, \boldsymbol{W}_{L}$

- Mismatch ——> Large WL and common centroid
- Mobility reduction \longrightarrow Scaling M1-4 vs M2-3 (for a given G_m)

GBW & Noise

 $G_m = KV_b \ge 5 mS$

- L ⇒ minimal (0.35 um)
 Maximize GBW
 Vds must be stable!
- W about 150 um •GBW and noise •Saturation

 $\longrightarrow |V_{in}| \leq \sqrt{\frac{I_{bias}}{\kappa} - \frac{3}{4}V_b^2 - \frac{V_b}{2}}$

- A floating voltage source is needed (Vb)
- Bias voltage is offset in Vgs of two matched PMOS
 - Offset by different drain currents: Ib (fixed) vs Icf (control)
- In closed loop (negative feedback) to decrease r_{out} of Vb
 - Must be independent of M2/M3 (I_{d23}) drain current
 - Vgs of MP3 increases if Id23 increases
 - Error amplifier changes VfbB to stabilize Vb

II. The circuit: folded regulated cascode common gate

16

- Regulated cascode
 - Folded: large voltage swing
 - Low input impedance
 - -BW
 - Linearity

» Channel length modulation in input pair

2/3I_{bias} 2/3I_{bias} M8 M6 M7 M5 VoL o--•VoH ViH 🖧 ViL M1 M4 М3 M2 -0 $R_c \gtrsim$ \ge R_c $|\mathsf{R}_{\mathsf{F}}|$ \geq R_F V_{b} bias

R _C	< 1.5 KΩ	BW
Gm	> 5 mS	Gain (noise)
lb	4 – 6 mA	Linearity
Vb	< 300 mV	Range

- I. Introduction
- II. The circuit

III.First prototype: ACTA

- IV. Second prototype: ACTA3
- V. Summary

III. First prototype: ACTA chip

- First prototype (ACTA chip)
- Voltage buffer
 - Source follower

• Gain tunable from 5 to 20

CMOS 0.35um AMS 3 mm² Submitted: July 20th 2009 Received: October 26th

Results of the first prototype

III. First prototype: ACTA chip

- Working
 - No ringing
 - Gain: 5 to 20
- Fast input pulse
 - Rise: 300 ps
- Output pulse
 - Rise time:
 - Small signal (< 1V)
 - 550 ps
 - High signal (> 1V)
 - 1.2 ns

III. ACTA chip: linearity

III. ACTA chip: frequency response

- I. Introduction
- II. The circuit
- III. First prototype: ACTA
- IV. Second prototype: ACTA3
- V. Summary

IV. Second prototype: ACTA3

- Closed loop buffer to replace source followers
 - Better linearity
 - Lower power consumption: class AB amplifier
 - Good slew rate with low quiescent current !
 - New version of a SAM OpAmp
 - Developed in collaboration with Irfu/Saclay

- <u>Closed loop buffer</u>: Miller OpAmp
- Double current boost of output nMOS
 Linear boost
 - Class B with nonlinear ctrl: off @ small signal
 - x6 boost with 750 uA (DC) total bias current
- Series resistor at the output (Rd) for $\rm C_L$ pole compensation

IV. ACTA3: 4 configurations

- Same gain block as in ACTA
- Not tested, only to "debug"

• As GmBO5 but the amplifier (R_{d1}) adjusted to drive a smaller C_1 (analogue memory input)

• As GmB5 but gain stage is modified to generate the DC offset required by ADC

• As GmBO1 but buffer replaced by diff. amp:

Subtract common mode signals (CMRR, PSRR)

IV. ACTA3: 4 configurations

IV. ACTA3: pulse shape

Good uniformity between small and large signal

IV. ACTA3: pulse shape

Good uniformity between small and large signal

IV. ACTA3: frequency response

- Negligible non-linearity linearity performance for V_{oD} < 2 Vpp
- BW bit smaller than expected (300 MHz) :
 - 250 MHz
 - BW given by R_d·C_L
 - Underestimation of C_L?
 - Process variation of R_d?

- BW of GmBO1 is even larger
 - Additional buffer !
- 300 MHz BW for ACTA3 + NECTARO input buffer
 - Need a very careful Rd tuning
 - BW vs stability
 - Environment more controlled
 - Same die
 - Postlayout simulation

IV. ACTA3: linearity

- Good linearity performance (< 1% for > 1 Vpp, < 5% up to 2 Vpp)
- Trade-off between linearity and power consumption

Relative charge error for different transconductor tail current

Vout [Vpp]

• DC offset is controlled by the current "Ibof"

IV. ACTA3: Offset generation: transfer function

• Similar behaviour for GmBO1 and GmBOs1

IV. ACTA3: temperature compensation

- Controlling temperature dependence of the gain
 - Transconductor TC is about -0.2%/C
 - Compensated by adjusting the TC of the current (Icf) controlling floating voltage source
 - Final TC \approx -0.05 %/C (1% for 20 C variation in one night)
- Band gap current reference (Ib) with TC \approx + 180 ppm/C

IV. ACTA3: noise

- Channel thermal noise of the input differential pair dominates
 - Wideband amplifier: 1/f noise not relevant: use NMOS
 - Cross-coupling degrades noise performance: g_m subtraction
- For input referred series noise < 3 nV/ \sqrt{Hz}
 - Gm > 5 mS : large K (W) and/or bias offset Vb
 - Tradeoff between noise and large signal handling
- Noise increases with differential pair bias current

IV. ACTA3: single photoelectron response

- Single photoelectron response at PM nominal gain (2-10⁵)
 - With R5900 PM, not optimal for SPE resolution
 - To be done with PM developed for CTA

Outlook

- I. Introduction
- II. The circuit
- III. First prototype: ACTA
- IV. Second prototype: ACTA3
- V. Summary

V. Summary

- Alternative architecture for wideband pulse amplifiers
 - Gain up to 20
 - Bandwidth
 - > 400 MHz for $C_L < 1 \text{ pF}$ >
 - > 300 MHz for $C_L < 5 \text{ pF}$

GBW > 6 GHz in 0.35 um CMOS technology

- Linearity < 1% for 1Vpp and < 3% for 2 Vpp</p>
 - For fast "closed loop" amplifiers, linearity is usually limited by slew rate
- Intrinsic BW of the core amplifier (without buffer) > 600 MHz
 - BW > 1 GHz in 130 nm technology ?
- Highly tunnable
 - Gain
 - DC offset : ADC interface
 - Linearity vs power

Thank you !

Linear amplifier: diff. pair with degeneration

- Three stages:
 - HF transconductor: source degenerated MOS diff. pair: V to I
 - Cascoded common gate amplifier: I to V
 - Source follower: low impedance driver (up to 3pF cap. load)
- Post-layout simulation: 5 GHz GBW and 3% lin error (VoD 1.7 V)

Results: linear amplifier: degenerated transconductor

- Working
 - Blue: input
 - Yellow: output
 - No ringing
- Fast input pulse
 - Rise: 300 ps
- Output pulse
 - Rise time:
 - Small signal (< 1V)
 - 574 ps
 - High signal (> 1V)
 - 1.2 ns

Preliminary results: linear amplifier: degenerated transconductor

III. First prototype: test set-up

- Two test cards
 - General charact
 - Fast pulse generation
 - Bias current though stable ref
 - S-parameter
 - Minimal components
- Acquisition
 - Scope:
 - 1.7 GHz
 - 20 GS/s
 - Probe: diff. 4 GHz
- Test just started
 - < 1 week</p>

I. Introduction: ACTA3

Second prototype (ACTA3)

- Better linearity
- Low power output driver:
 - Class AB amplifier
 - New version of a SAM OpAmp
 - Collaboration with Eric
- Temperature compensation
- Control of DC offset as needed for ADC

II. Blocks in ACTA3: GmB5

- Same gain block as in ACTA
- New buffer
 - Based on the same OpAmp used for NECTARO input buffers
 - Colaboration with Saclay
- Compensation resistor sized to drive outptut pads (4-5 pF load)
- Not tested for the moment, only to "debug"

- As GmB5 but gain stage is modified to generate the DC offset required by ADC
- Compensation resistor sized to drive outptut pads (4-5 pF load)

II. Blocks in ACTA3: GmBO1

- As GmBO5 but the amplifier (Rd1) is adjusted to drive a smaller capacitance:
 - It should be the case if it is integrated in the analogue memory chip
 - An additional buffer is added to emulate the NECTArO input stage and test the chain

- As GmBO1 but the buffer is replaced by a fully differential amplifier:
 - Subtract common mode signals as soon as possible (CMRR, PSRR)

• Second order response effects in the shape? (small ...)

• Second order response effects in the shape? (small...)

• A current control Ibfol has to be set to > 30 uA to be sure that the class B current boost is off at the quiescent state

IV. Behaviour of the new buffer: bias current (buffer driving 5 pF)

- Bias current (4*Ibbpp):
 - If too low (< 75uA for 5pF, <45uA for 1 pF) GBW is too low
 - If too high (>200uA) phase margin too low

V. Bandwidth: GmBO5

- Nice first order response with little non-linearity up to 2 V, but...
- However BW is only 200 MHZ
 - Rd was adjusted to have 300 MHz !!!
 - With an external Cload of 3 pF + extracted capacitances including pads

V. Bandwidth: GmBO5

- It seems that the BW is dominated by the pole Rd*Cload
 - After some surgery it was possible to measure the BW with shorter PCB traces: increases to 250 MHz
 - The response looks like a first order response (up to 500 MHz)
- Possible explanation
 - External Cload is larger than expected
 - Process variation effects in R and C

V. Bandwidth: GmBO5 vs GmB01

- Additional confirmation that the BW is limited by the Rd*Cload
 - The BW of GmBO1 is even larger
 - It has an additional buffer !
- Should be possible to achieve > 300 MHz BW for the full amplification
 - ACTA3 + NECTAR0 input buffer
 - Need a very careful tuning of Rd
 - BW vs stability
 - Environment more controlled
 - ACTA3 in NECTAR silicon
 - Postlayout simulation with Eric
- Side effect:
 - Underestimation of lin error ?
 - Seems to be enough margin...

VI. Linearity

- Remember that gain depends on two bias current:
 - Ibgm: linearized transconducor differential pair tail current
 - Icf: current controlling floating voltage supply current
- "Nominal" condition is Ibgm=1500 uA and Icf=150uA (pulse gain = 16, DC gain = 20)
- Results will be shown for this condition
- Tested for other conditions, results available for other conditions:
 - Trade-off conssumption / linearty
 - Nominal conssumption is 10 mA

VI. Linearity: GmB05

- Amplitude measurement
- Linearity residue:
 - < 1 % of the Full Scale (F.S.) for outputs < 1.3 Vpp
 - < 3 % F.S. for output < 1.6 Vpp

Guany

Error

VI. Linearity: GmB05

- Charge (area) measurement
- Linearity residue:
 - < 1 % of the Full Scale (F.S.) for outputs < 1.3 Vpp
 - < 3 % F.S. for output < 1.6 Vpp

VI. Linearity: GmB0s1

IV. ACTA3: Offset generation: effect on linearity and gain

- Linearity is ok at the gain plateau
- Optimal region around Ibof 300 uA

Guany vs. Ibof

