The Radiation Hardness of Specific Multi-mode and Single-mode Optical Fibres at -25°C to Full SLHC Doses

Nick Ryder, Todd Huffman, Tony Weidberg

University of Oxford

Topical Workshop on Electronics for Particle Physics Aachen, September 2010

Introduction

- SLHC is planned with integrated luminosity increased by a factor of 10 compared to LHC
- General purpose detectors will need upgraded inner detectors to handle increase in data rates and radiation damage
- Optical fibres to transfer data to and from the tracker that are radiation hard in the cold (-25°C) environment of the tracker must be identified
- Fibres are damaged more in cold environment due to decreased annealing
- Fibres are damaged more by higher dose rates

Previous Measurements

- A selection of Single Mode (SM) and Multi-Mode (MM) fibres have been tested to beyond a full 'worst case scenario' SLHC dose (375kGy(Si)) in a warm environment
- Some fibres have been tested at a range of temperatures
- Evidence seen for RIA having temperature dependence, as expected from literature
- \bullet For cold (-25°C) tests dose was limited by use of Peltier coolers
- Cold testing up to full SLHC dose is required
- Required radiation hard cooling system

CO₂ Cooling System

Experimental Setup

- A selection of Single Mode (SM) and Multi-Mode (MM) fibres tested
- SM fibres illuminated by 1310nm EELs, MM fibres illuminated by 850nm VCSELs
- Fibres cooled by CO₂ cooling system
- Cooling system lowered into array of ⁶⁰Co in canal filled with water for shielding at SCK-CEN in Mol, Belgium
- ullet Go array provides γ at 27 kGy(Si) / hr
- Light power transmitted through fibres in the radiation zone compared with reference fibres out of radiation zone
- Radiation Induced Absorption (RIA) found as dB loss relative to reference fibre, per metre

Experimental Run

- Cooling system ran well for over 1 hour before becoming unstable
- System removed from radiation zone due to cooling failure
- System re-cooled and forward pressure increased
- System returned to radiation zone and maintained stable temperature for 18 hours

Fibres Tested

Manufacturer	Fibre	Mode	Wavelength
Corning	SMF-28e+	SM	1310 nm
Corning	Infinicor SX+	MM	850 nm
Draka	DrakaElite TM Super RadHard	SM	1310 nm
	Single-Mode Fiber (SRH-SMF)		
Manufacturer X	Fibre X	SM	1310 nm

Results

- Draka SRH-SMF and Fibre X fibres performed excellently
- Corning fibres' light levels dropped below the dynamic range of the DAQ system very rapidly, so a lower limit on RIA is set

Fibre	RIA(375 kGy) [dB/m]	
Corning SMF-28	> 0.9	
Corning Infinicor SX+	> 0.9	
Draka SRH-SMF	0.067	
Fibre X	0.022	

Results - Corning SMF-28

Results - Corning Infinicor SX+

Results - DrakaEliteTMSuper RadHard Single-Mode Fiber

Results - Fibre X

Modelling Realistic Fibre Path

- Draka and Producer X RIA(dose) function fitted
- LHC dose map scaled to SLHC doses
- Total RIA for a realistic path through a general purpose inner detector was calculated
- Total budget for RIA in whole length of fibre set as 1dB
- Very high dose rate means damage is overestimated
- Draka SRH-SMF total RIA calculated to be 0.142 dB
- Fibre X total RIA calculated to be 0.064 dB

Conclusion and Further Work

- A number of fibres have been measured above full SLHC dose at -25°C for the first time
- Full SLHC dose given in a day, leading to largely overestimated RIA
- DrakaEliteTMSuper RadHard Single-Mode Fiber and Fibre X fibres performed very well even with such high dose rates
- Very confident that these fibres could withstand SLHC dose even in cold environment
- Corning fibres cannot be excluded since they have performed well at lower dose rates
- Investigating the possibility of retesting fibres at lower dose rate

Acknowledgements

- We would like to thank the Oxford Physics Workshop for designing and constructing the CO₂ cooling system.
- We would also like to acknowledge the work done by SCK-CEN in preparing our system, evaluating the safety of our planned experiment and for help setting up and running our experiment.
- Also like to thank Draka for providing fibres