High energy physics for pedestrians

Patrick Puzo

Laboratoire de l'Accélérateur Linéaire Orsay

- 1. Forces and interactions
- 2. Standard Model
- 3. Experimental aspects
- 4. Open questions and future

- Apologies for high energy physicists
- Compilation of some ideas/problems, but not in chronological order
- In principle, transparencies are self-consistent
- Will not speak of neutrino physics
- Assume electromagnetism is known. I will use a little special relativity and quantum mechanics

Some orders of magnitude

• Energies are measured in eV (1 eV = 1,6 10^{-19} J),

- keV (10³ eV), MeV (10⁶ eV), GeV (10⁹ eV), TeV (10¹² eV)
- Maximum energy artificially given to particules is
 - electrons: around 100 GeV (LEP II)
 - protons: 3.5 TeV at LHC (ultimately 7 TeV)
- Higher energy particles exist in Universe, but we do not know their acceleration mechanism (see for instance Auger experiment)

« High energy » collisions

- At macroscopic scale, « high energy » is very low:
 - Ultimate LHC : 7 TeV

• $\Rightarrow E_{LHC}$ = 14 10¹² eV

- High speed bee (1 g = 5,8 10^{32} eV/c² et v = 1 m/s)

• $\Rightarrow E_{Bee} = 10^{-3} \text{ J} = 6,25 \ 10^{15} \text{ eV}$

- However, energy density is very high
- Total beam energy is huge:
 - Nominal LHC : 10¹⁴ protons
 - $\Rightarrow E_{Beam}$ = 10¹⁴ × 14 10¹² \approx 10⁸ J
 - Kinetic energy of a 100 t truck running at 120 km/h

High energy and special relativity

- Main property: the speed of light (photon) is c in any reference frame
- Particules in high energy physics are ultra-relativistic:
 - Special relativity
 - Moving frame is the particule one's
 - Rest frame is the lab one's
- No influence of gravitation in HEP

$$\begin{cases} F^{EM} \propto \frac{1}{r^2} & F^{EM} \\ F^G \propto \frac{1}{r^2} & F^{FG} \approx 10^{39} - 10^{42} \end{cases}$$

HEP for pedestrians - TWEPP 2010

Energy and momentum verifies :

$$E = \gamma m c^{2}$$
$$p = m \gamma \beta c \approx m \gamma c$$

$$\left[\begin{array}{c} \beta \ = \ \frac{v}{c} \ = \ \frac{p \, c}{E} \\ \gamma \ = \ \frac{1}{\sqrt{1 - \beta^2}} \end{array}\right]$$

- Very useful:
$$E^2 \ = \ p^2 \ c^2 \ + \ m^2 \ c^4$$

The relevant quantity is no longer speed but energy:

	PS (28 GeV)	SPS (450 GeV)	LHC (7000 GeV)
Speed	0.9989 c	0.99996 c	0,99999998 c

In special relativity, only momentum and total energy are conserved (not the mass)

$$E^2 = p^2 c^2 + m^2 c^4$$

- Special relativity:
 - Momentum are measured in MeV/c ou GeV/c
 - Masses are measured in MeV/c^2 ou GeV/c^2
 - We sometimes forget « /c » ou « /c² », ie « proton mass is 938,27 MeV »
 - In fact, real proton mass is:

$$m_p = \frac{(938,27 \times 10^6) \times (1,6 \times 10^{-19})}{(3 \times 10^8)^2} = 1,66 \times 10^{-27} \text{ kg}$$

- In high energy physics, we always have $p \ c \gg m \ c^2$.
 - pc et E are not distinguished: speaking of « 50 GeV electrons » or « 7 TeV protons », we do not precise if this is their momentunm or their energy

- 1. Forces and interactions
- 2. Standard Model
- 3. Experimental aspects
- 4. Open questions and future

« Modern physics » interactions

Strong force

- Once protons have been discovered, we knew someting was needed to keep the nucleus stable
- In fact, strong force acts:
 - between quarks inside a proton (main effect)
 - between protons inside a nucleus (residual effect)
- Weak force
 - Explain β decay (continuous energy spectrum for e⁻):

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Current status of unification

4 fundamental interactions

	Gravity	Weak	Electromagnetism	Strong
Relative intensity	≈ 10 ⁻⁴⁰	≈ 10 ⁻⁵	≈ 10-2	1

- The strong force is the strongest (and the least known)
- All known phenomena can be explained by these 4 forces

Interactions splitting: link with cosmology

- t = 0 (Big Bang)
 - One single interaction
- **t** = 10⁻⁴³ s, T = 10³² K
 - Gravitation splits
- t = 10⁻³⁵ s, T = 10²⁷ K
 - Strong interaction splits
- t = 10⁻¹¹ s, T = 10¹⁵ K
 - Electroweak interaction splits
- t = 1.4 10¹⁰ years, T = 2.7 K
 - 4 interactions

What occurs during an « interaction » ?

- When 2 particules interact, they exchange a third one
 - which carries properties between both particules (E, P_T , ...)
- Modelisation through Feynman diagrams:
 - Only rule: Conservation laws have to be checked in each vertex

QED allows to violate energy conservation, if it is very fast :

$$\Delta E \ \Delta t \ \approx \hbar$$

- During Δt , virtual particules are exchanged (energy is taken from the field)
- After Δt , energy conservation is valid again
- Qualitatively: $\Delta E \ge m c^2 \iff \Delta t \le \frac{\hbar}{m c^2}$ - The interaction range is at most $\frac{\hbar}{m c}$

Exchange particules

	Gravity	Electromagnetism	Weak	Strong
Exchange particule	Graviton (?)	Photon γ	Z^0, W^{\pm}	gluons
Range	Infinity	Infinity	≈ 10 ⁻¹⁷ m	≈ 10 ⁻¹⁵ m

- Strong interaction:
 - Nuclear radius (1.4 fm) \Rightarrow mc² = 140 MeV (OK with π)
- Weak interaction
 - $m_{W_{\pm}} \approx 80 \text{ GeV/c}^2 \Rightarrow \Delta x \approx 2.5 \text{ 10}^{-17} \text{ m}$
- Photon is massless: infinite range for electromagnetism

- 1. Forces and interactions
- 2. Standard Model
- 3. Experimental aspects
- 4. Open questions and future

Elementary particules

All known matter is made of 6 leptons and 6 quarks

				Electric charge	Strong charge
	Electron (e ⁻)	<mark>Muon (</mark> μ⁻)	<mark>Ταυ (</mark> τ⁻)	-1	no
	Neutrino (v_e)	Neutrino (v_{μ})	Neutrino (v_{τ})	0	no
•	Up (u)	Charm (c)	Top (†)	+2/3	yes
	Down (d)	Strange (s)	Bottom (b)	-1/3	yes

- For each of these, it exists an antiparticle with opposite electrical charge
- A good theory is predictive: τ, b and t found after being thought
- No internal structure is known

Quarks Leptons

Stable vs unstable particules

Usual matter (stable) is only made of electrons, u and d quarks

- proton - Electron, proton, photon and neutrinos (?) are the only stable particules
- All other particules are unstable : Decay following: $N(t) = N_0 \exp\left(-\frac{t}{\tau}\right)$

	n	μ-	π+	J/Ψ	Z
τ (s)	887	≈ 10 ⁻⁶	≈ 10 ⁻⁸	≈ 10 -20	≈ 10 ⁻²⁵

- Note that in the lab frame: $au_{lab} = \gamma au$

neutron

Neutrino

Can be produced by neutron decay:

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Electron and neutrino are two kind of the same « particule ». We always have :

$$\nu \leftrightarrow e^ \bar{\nu} \leftrightarrow e^+$$

- They all carry an electronic leptonic number which is preserved (+1 for e⁻ and neutrino, -1 for e⁺ and antineutrino)
- We have the same behaviour with μ and τ
- Any neutrino oscillation would violate these rules ...

- Weak interaction
 - Z⁰: elastic scattering of neutrino and anti neutrino
 - W[±]: inelastic scattering between leptons
- The three radiation types are linked to three interactions: α (strong), β (weak) and γ (electromagnetic)

- 1. Forces and interactions
- 2. Standard Model
- 3. Experimental aspects
- 4. Open questions and future

- Detectors shall give particules properties :
 - Masse, energy, charge, ..
- All detectors on colliders have the same onion skin structure
- Only options :
 - Solenoid location wrt calorimeters
 - Shape (octogonal, cylindric, ...)

- These quantities are constrained by initial conditions (E_T = 0 and P_T = 0)
- Of interest is also *missing transverse energy* or (missing P_T)
- A very efficient way of creating missing E_{τ} is a wrong calibration...

What do we measure ?

What matters for the physicist is the interaction probability σ or cross section :

Event rate in the detector $\frac{dN}{dt} = \sigma \mathcal{L} A \epsilon$ $\frac{A: Acceptance}{\epsilon: Efficiency}$ $\frac{Luminosity}{Luminosity} = Cross section are measured in barn (1 barn = 10⁻²⁸ m² = 10⁻²⁸ m$

10⁻²⁴ cm²): see the sphere model

The luminosity is a quality factor of the collision

f: Frequency

$$N_1, N_2$$
: Beam currents $\mathcal{L} = f \frac{N_1 N_2}{\Sigma}$

$$\frac{dN}{dt} = \sigma \mathcal{L} A \epsilon$$

Luminosity is expressed in cm⁻² s⁻¹

- For instance, if LHC runs at $10^{32} \text{ cm}^{-2}\text{s}^{-1}$: $1 \text{ b} = 10^{-24} \text{ cm}^2$ $1 \mu \text{b} = 10^{-30} \text{ cm}^2$
- In one hour, it will integrate $3600 \text{ s} \times 100 \ \mu \text{b}^{-1} \text{s}^{-1} = 0.36 \text{ pb}^{-1}$

Lepton vs hadron colliders

Leptons (e⁻, e⁺, μ[±] ?): Elementary particules

- Well defined energy
- Clean final state
- LEP I/SLC adjusted on the Z
- TRISTAN was off the Z
- Suited for precision studies at design energy
- Hadrons: Collision energy unknown but huge dynamical range
 - Discovery machines

- Leptons : width from an energy scan limited by the beam energy resolution
- Hadrons : width from the detector resolution

HEP for pedestrians - TWEPP 2010

HEP « tricks »

If decay time < 1 fs, no direct observation possible</p>

- A 14 GeV π^0 ($\gamma \approx 100$) has in the lab frame $\gamma \tau = 0.84 \ 10^{-15}$ s and only travel d $\approx c\gamma \tau = 0.25 \ \mu m$
- Indirect reconstruction using $\pi^0 \rightarrow \gamma \gamma$ using

$$E_{\pi} = E_{\gamma_1} + E_{\gamma_2} \qquad \vec{p}_{\pi} = \vec{p}_{\gamma_1} + \vec{p}_{\gamma_2}$$

- Production of « mass plots »:
 - Study of $X \rightarrow \mu^+ \mu^-$
 - Special relativity tells us:

$$E_X = E_{\mu^+} + E_{\mu^-} \qquad \vec{p}_X = \vec{p}_{\mu^+} + \vec{p}_{\mu^-}$$

$$E_X^2 - p_X^2 c^2 = m_X^2 c^4$$

 J/Ψ discovery

HEP for pedestrians - TWEPP 2010

Resonances

 For some particules (resonances), mass peak is broad, regardless of detector precision

- From quantum mechanics, we know: $\Delta E \ \Delta t \approx \frac{\hbar}{2}$ Heisenberg relation
 - Measuring E with precision ΔE requires time Δt
 - Only relevant in subatomic world $\longrightarrow \hbar \approx 1.05 \ 10^{-34} \ \mathrm{Js}$
- Any instable particule can not have an infinitely precise mass ! It has a mass *m* close to $m_0 \ll$ nominal »:

$$|m-m_0| \approx \frac{\hbar}{\tau}$$

The mass plot shows a Breit-Wigner shape (or Cauchy or Lorenzt) with intrinsic width:

For $\tau \ll 10^{-18}$ s, we look for the width $\Gamma \gg 1$ keV

HEP for pedestrians - TWEPP 2010

- 1. Forces and interactions
- 2. Standard Model
- 3. Experimental aspects
- 4. Open questions and future

To be solved by LHC!

- The goal of LHC is to complete Standard Model with Higgs boson (to complete electroweak theory)
 - Would explain the particules's masses
 - e⁻: 511 keV/c², n/p (930 MeV/c²), μ (105 MeV/c²), τ (1785 MeV/c²), Z (91 GeV/c²), W (80 GeV/c²)
 - Should be light (less than 200 GeV) following LEP/SLD
- Golden mode at LHC is $H \rightarrow \gamma \gamma$
 - A lot of expectations in EM calorimeters!
 - Other modes have a lot of background, may be not easily under control (strong force)

- New physics expected at LHC:
 - Higgs boson
 - Supersymetry (SUSY)
 - Allows to treat the same way fermions and bosons (GUT)
 - Today we see fermions and bosons fields
 - Heavy gauge bosons
 - Extra dimensions

Should be detected by large amount of missing E_T

CP violation

- Experimentaly, we observe $\sigma(s
 ightarrow u \; W^-) \; \ll \; \sigma(d
 ightarrow u \; W^-)$
- This is due to the fact weak interaction between ud and us is in fact an interaction between u and

$$d' = \cos(\theta_c) d + \sin(\theta_c) s$$
 θ_c : Cabibbo angle

- This idea was extended by Kobayashi and Maskawa to other quarks (CKM matrix):
 - V_ij accessible via weak coupling
 - If V_ij complex, would
 explain « CP violation »

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CKM matrix

Neutrinos oscillations

- Quantum mechanics property:
 - A neutrino created with a specific lepton flavour (e, μ or τ) can later be measured with a different flavor
- Neutrino oscillation implies that the neutrino has a non-zero mass, which is left possible by the Standard Model
- Several hints towards neutrino oscillation have been seen since 60's (solar neutrinos). In may 2010, OPERA claimed a τ observation in a ν_{μ} beam

- Next machine will be e⁺e⁻, but at which energy ?
 - Current best guess is around 500 GeV
 - Need for the LHC to say this
- This shall give enough accuracy on SUSY and dark matter searches to match cosmological needs

From detector point of view

- Very demanding on:
 - hermiticity to improve E_{T} measurement
 - detector quality (no dead channels)
- Higher granularity requires lower consumption
 - From ATLAS LAr FEB electronics (1W/ch) to ILC needs (100 $\mu\text{W/ch})$

Conclusion

- Hope I did not bother you too much
- What I said is obviously too simplified to be completely correct..
- I heavily used materials from CERN Summer Students Program (2002, 2007, 2010)