

DCDB - A 256 Channel 8-Bit Current Digitizer ASIC for the Belle-II PXD

Jochen Knopf, Peter Fischer, Christian Kreidl, Ivan Peric ziti, Heidelberg University

> TWEPP 2010, Aachen 22.09.2010

Outline

- The Belle-II Experiment
- DEPFET as Pixel Detector for the Belle-II Experiment
- Introduction: DEPFET Current Digitizer for Belle-II (DCDB)
- DCDB Test Setup
- Measurement Results

The Belle-II Experiment

The Belle-II Experiment at KEK (Japan)

KEK:

Japan's leading high energy physics laboratory

SuperKEKB:

KEK's next generation B-meson factory

- Asymmetric electron/positron collider (3.5 GeV, 8 GeV)
- Luminosity up to $8 \times 10^{35} 1/s \cdot cm^2$
- Nano beam design: 3,7 / 2,1 A

Belle-II (aka SuperBelle): Particle detector at the SuperKEKB machine

- Study CP violation via $B_0/\overline{B_0}$ decays

Detector Upgrades: From Belle to Belle-II

Challenges:

- Higher Background (x20): radiation damage, occupancy
- Higher event rate (x50): higher trigger rate, DAQ, computing

Silicon vertex

detector upgrade:

- Belle: 4 layers of Strip Detector
- Belle-II: 2 layers of Pixel Detector plus 4 layers of Strip Detector

Various upgrades

for all sub-detectors:

- Vertex resolution
- Rate capability
- Particle identification

DEPFET as Pixel Detector for the Belle-II Experiment

The DEPFET Collaboration

- University of Barcelona
- CNM, Barcelona
- Ramon Llull University
- Bonn University
- Heidelberg University
- Göttingen University
- Karlsruhe University
- IFJ PAN, Krakow

- MPI Munich
- Charles University, Prague
- TU Munich
- IFIC,CSIC-UVEG, Valencia
- University of Giessen
- LMU Munich
- University of Santiago de Compostela

The DEPFET Pixel Detector for Belle-II

2 layers @ r=1.4cm and r=2.2cm

All-silicon modules

Self-supporting structure

DEPFET Assembly Model

The DEPFET Detector Ladder

DPEFET Detector Readout Scheme

Rolling shutter readout mode:

- Steering chips select row by row
- DCDB digitizes
 selected pixels in
 parallel
- 20µs readout time for entire frame

Requirements:

MIP hitting 75µm thin Si $\rightarrow \sim$ 6000 electron-hole-pairs DEPFET gain: 500pA/e $\rightarrow \sim$ 3µA signal per MIP S/N target of 10-20 \rightarrow **Noise target < 150-300nA**

Introduction: DEPFET Current Digitizer for Belle-II (DCDB)

DCDB's Analog Pixel (simplified!)

- DAC: Dynamic offset correction by adding a variable current to the input node
- Receiver: Trans-Impedance Amplifier for amplification of the input current
- Two Cyclic ADCs: Alternating conversion of analog input current to digital value
- Probes: The input and output node of every pixel's receiver is accessible via the monitor pin
- Optional operation mode: double correlated sampling

DCDB Main Features

256 Channels:

- ➢ 8 bit data output (~6 bit ADC resolution req.)
- > Dynamic offset adjustment
- 80ns target sampling period
- Power: ~4mW per channel (analog + digital)

Fully synthesized digital readout:

- > 8x 8 Bit data output @ 300-400MHz
- JTAG configuration interface
- Using self-made standard cell library

DCDB Production Details

- Implemented in UMC 180nm CMOS technology
- Area: 3240x4969 µm²
- ~ 2x3 Mini@sic Blocks on a EuroPractice MPW run
- Additional 7th metal layer (redistribution layer) with bump-bond pads including bumps
- Production + bumping costs:
 ~ 20800 EUR (for 60 pcs.)
- Production time: 5 months total
 - 3 months: MPW run
 - 2 months: 7th metal layer + bumping

DCDB Pictures

- Bumps @ 200µm pitch
- Increased density by hexagonal pattern

DCDB Test Setup

DCDB Test Environment: Wire-Bond-Adapter

- Substrates designed in Heidelberg, produced at MPG-HLL in Munich
- Flipped using gold studs as under bump metalization

DCDB Test Environment: Pictures

DCDB Test Environment: Hardware

- The test environment is based on a Virtex4 LX40 FPGA board (SiLab - Uni Bonn)
- The FPGA is used for configuring, controlling and reading the DCDB
- The DCD-RO is used for signal conversion / repeating and static 2:1 multiplexing
- SMA connectors bonded to the monitor and some of the analog input pads provide direct access to the DCDB's analog channels

DCDB Test Environment: FPGA Firmware Details

Measurement Results

- Minimum speed requirement to fulfill 20µs frame readout time:
 - 10MHz ADC sample rate
 - Leads to 320MHz clock frequency
- Digital part: Operates well up to 355MHz (PCB traces not optimized!)
- Analog part:
 - > Default clock frequency: 100MHz (\rightarrow 3,125MHz ADC sample rate)
 - > Operates OK @ 200MHz, but higher noise
- Similar design on test chip operates well up to 350MHz
- \rightarrow Further investigation necessary
- → Results on following slides were obtained using the default clock frequency of 100MHz

ADC's Transfer Characteristic

ADC's Integral Non-Linearity

ADC's Noise (RMS)

Gain Switching

TIA Gain = Feedback Resistor (30k, 60k, 90k)

Gain Map

DEPFET Prototype Readout System

Testbeam @ CERN planned for November 2010

First Measurements

Half of the columns are not connected

Summary

- DCDB is a complex multi channel readout ASIC for Belle-II PXD
- It contains 256 fast (10MHz sample rate) low power (4mW per channel) ADC channels with 6-8 bit resolution
- Data is digitally transferred off-chip using 8x 8 bit low power links
- Connectivity relies only on bump bonds
- Speed:
 - → Digital part: OK! (~355MHz)
 - → Analog part: 100-200MHz \rightarrow Investigations necessary

Noise:

- → ~50nA dominated by common mode pick-up
- → ~38nA after correction

A DEPFET prototype system has been operated successfully

Thank you!

Backup Slides

The DEPFET Transistor

- Each pixel is a p-channel FET on a completely depleted bulk (sidewards depletion). Charge is collected by drift
- A deep n-implant creates a potential minimum for electrons underneath the gate (internal gate)
- Signal electrons accumulate in the internal gate and modulate the transistor current (gq≈400pA/e-)
- Accumulated charge can be removed by a clear contact

DCDB's internal Structure

DCDB's Analog Pixel

Measurements: Power Consumption

	Clock Off	100 MHz	200 MHz	400 MHz (extrapolated)
VDDA [mA]	225 (max. 357)	231 (max. 362)	238 (max. 370)	259 (max. 390)
VDDD [mA]	78	131	183	290
RefIn [mA]	18	28	28	28
AmpLow [mA]	129 (max. 250)	128 (max. 250)	128 (max. 250)	128 (max. 250)
Total Power [W]	0,56 (max. 0,8)	0,68 (max. 0,92)	0,79 (max. 1,02)	1,02 (max. 1,25)

