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OUTLINE

 Introduction: imec vision & roadmap

Technology components and results:

• Frontside illuminated imagers

• Backside illuminated imagers

• Hybrid backside illuminated imagers

• 3D integrated imagers

• Flex embedded imagers

 Conclusion
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IMAGING HISTORY

 Historical (r)evolution in radiation detection/imaging:

• Single pixel linear array 2D array

 = thanks to:

• Mother Nature: Si has a combination of unique properties

- Right bandgap to detect visible light

- Absorption of photons in a few micron thickness

- The best/most practical semiconductor material

• Development in microelectronics fabrication technology:

Technologies:

• Dedicated imager technology: Charge Coupled Device 
(CCD) – Nobel Prize 2009

• CMOS image sensors (CIS) are taking over thanks to 
advantages of CMOS scaling: i.e. integration on electronics, low 
power, ...
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INTRODUCTION

 2 imager roadmaps with a different approach:

• Traditional roadmap: scaling to smaller pixels:

- Equal chip size (or slightly smaller)

- Higher resolution

- Lower sensitivity/pixel backside illumination

• IMEC Integration/packaging roadmap:

- Backside illuminated Hybrid 3D integrated

- Enables advanced imaging systems
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IMEC VISION:

ADVANCED IMAGER INTEGRATION
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LARGE AREA IMAGERS:

STITCHING

 Stitching allows large area imagers:

• Up to 1 imager per wafer

 Different imager sizes on one wafer 

demonstrated:

• 12x12 mm2, 25x25 mm2 and 50x50 mm2

Application: e.g. X-ray
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SPECIAL SUBSTRATES

 Epitaxial layers:

• Thick:

- Up to 50 um demonstrated

- For detection of radiation penetrating 

deeper in Si

• Graded dopant concentration

- For directional carrier transport

= lower cross-talk

 High resistivity substrates:

• Both n and p-type

• Resistivity > 1kOhm.cm

• Solution for chucking in imec fab

• Application: fully depleted imagers for e.g. 

low cross-talk and X-ray direct detection
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HYBRID BACKSIDE ILLUMINATED IMAGERS :

TRENCHES FOR ZERO CROSS-TALK

 Poly-Si doped trenches separating pixels:

• Disadvantage: (limited) reduction in fill-factor

• Advantage: no cross-talk

 Demonstrated using laser point source

 ongoing optimization: recovery of good charge collection & QE/
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BACKSIDE ILLUMINATED IMAGERS:

THINNING

Technology:

• Course + fine grinding

• Critical: thinning damage, impact 

on devices

Wafer handling:

• Very thin wafers (< 100 um): use 

of carrier wafers and temporary 

wafer (de-)bonding technology

 IMEC results:

• Thinning down to 15 um

• Total thickness variation ~ 2 um 

on 200 mm wafer
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BACKSIDE ILLUMINATED IMAGERS:

Advantage: no dielectric/metal in 

radiation path: 

- 100% fill factor,

- No QE loss

- Broader wavelength range for radiation 

with shallow penetration (i.e. in UV)

Technology:

• Backside thinning + damage removal:

- Combination of grinding and Si etch

• Backside passivation of trapping 

centers:

- High dose implant

- Laser annealing (for low T budget)
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BACKSIDE ILLUMINATED IMAGERS:
SENSITIVITY 

 Reduced charge collection/QE for radiation with long absorption length

 Example @ 900 nm: 12 micron epi:  50% QE, 50 micron epi:  90% QE

 Similar challenge for X-ray detectection ( < 1 nm, Energy > 1 keV)

 Solution: thick epi or high resistivity substrates
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Photon 

absorption 

length in Si

@280 nm:

absorption length in Si is 

~ 4 nm

BACKSIDE ILLUMINATED IMAGERS:
SENSITIVITY

 Detection of  radiation with short absorption length is a challenge:

• Very short absorption length in dielectric materials (i.e. BEOL)

- Solution:  exposed Si, e.g. backside illumination

• Very short absorption length in Si

- Solution:  very shallow passivation layer (< 10 nm),  optimalization ongoing

 Example: (N)UV detection: sensitivity @ 280 nm demonstrated
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HYBRID BACKSIDE ILLUMINATED IMAGERS: 

HIGH DENSITY BUMPING

 In and CuSn microbumps:

• Post-process at wafer level for both sides:

- Under-bump metallization (UBM) & patterning

- Solder deposition & patterning

• Smallest pitch:

- 20 um 

- 10 um under development
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HYBRID BACKSIDE ILLUMINATED IMAGERS: 

HIGH DENSITY BUMPING

 Flip-chip interconnect scaling:

• Intermetallics formed by UBM solder interaction 

• Very small pitch: only intermetallic compounds

 Intermetallic bonding:

• Advantage: have a higher melting point (and allow multiple layer stacking)

• Disadvantage: multiple intermetallic compounds with variable reliability
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HYBRID BACKSIDE ILLUMINATED IMAGERS: 

HIGH DENSITY BUMPING

 Bonding:

• Thermo-compression (high T and force)

• Different options:

- Flip-chip: D2D, D2W

- Wafer bonding: W2W

- Collective bonding: 1) populate D2W 2) W2W bonding + anneal 

• Specialty: bonding of thin dies/wafers (on carrier)
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HYBRID BACKSIDE ILLUMINATED IMAGERS: 

HIGH DENSITY BUMPING

 W2W:

• Advantages:

- Technological ease: top layer can be thinned (and post-processed) after bonding to 2nd layer

- Low cost

• Disadvantage: 

- Equal chip size

- Localization/processing of final outputs (unless using TSVs)

- Compound yield may be low

• Starts to be commercially available: MIT/Lincoln (SOI based), Tezzaron (but limited to 1 

techno node)

 D2W:

• Advantages:

- Higher compound yield through Know Good Die (if testable !)

- Different die sizes 

- Dies from different source wafers(i.e. different technologies) and from wafer sizes

• Disadvantages:

- More difficult process (hence higher cost): populate ‘reconstructed’ wafers (= serial process), maximal use of parallel 

processes (e.g. collective bonding)

• Not yet commercially available:  IMEC CMORE offering for small volumes
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HYBRID BACKSIDE ILLUMINATED IMAGERS:

HYBRID IMAGERS
 Concept:

• Face to face bonding using microbumps

• 1 microbump per pixel

• Top layer: 

- (typ.) Passive photodiodes

- Choice of materials: Si (ev. high res), InGaAs, CdTe, (Al)GaN, ... for specific 

wavelength range detection (X-ray, UV, visible, IR, ...)

• Bottom layer:

- CMOS read-out circuit (ROIC)

Advantage:

- Different wafer material and/or technology top vs. bottom allows separate 

optimization

 Disadvantage:

- Pixel pitch limited to bump pitch
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HETEROGENEOUS HYBRID IMAGERS:
(E)UV DETECTION USING ALGAN SCHOTTKY DIODES

 Concept: 

• AlGaN growth on Si

• Photodiode process

• Flip-chip integration on ROIC

• Backside etch of Si

- Till membrane of < 1 um (!)

Advantages vs. Si photodiodes:

• Visible blind:

- Due to large bandgap

- Interest for e.g. sun observation

• UV radiation tolerant

 Demonstration of 256x256    

10 um pitch imager
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HETEROGENEOUS HYBRID IMAGERS:
FAR IR DETECTION USING CRYOGENIC BIB DETECTORS

 Far IR detection (6-18 um) 

 Concept: 

• Si:As Blocked Impurity Band (BIB) 

detector array operating at 4 Kelvin 

• Backside illuminated through high 

resistivity Si

• Dedicated epi stack growth on Si

• Contact process for buried contact and 

individual pixel

• Flip-chip integration on cryogenic ROIC

• In microbumps (for ultra-low 

temperature)

 Demonstration of bilinear array: 2x 88 

pixels @ 30 um pitch

Application: DARWIN mission:

• Exoplanet atmosphere analysis
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SI HYBRID IMAGERS FOR VISIBLE DETECTION:

‘HYBRID APS’

 Specifications:

• 22.5 um pitch

• Stitched design: 512x512, 1024x1024

• QE> 80% from 400 – 850 nm

• Thick epi: final thickness ~ 35 um

 ROIC designed by FillFactory/Cypress, 

fabricated in CMOS 0.35um foundry 

process:

• Snapshot:  synchronous pipelined shutter using 3 

analog storage capacitors

• On-chip Correlated Double Sampling (CDS)
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3D INTEGRATED IMAGER TECHNOLOGY:

INTRODUCTION

 = create vertical interconnect using combination of

• Through-Si vias (TSVs)

• High density microbuming

 Process sequence:

1) Process TSVs and UBM/microbumps – on wafer level

2) Assembly – D2D/D2W/W2W

 2 options for TSV process:

• After finishing CMOS processing = post-processing

• During CMOS process
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3D INTEGRATED IMAGER TECHNOLOGY:
3D-WAFER LEVEL PACKAGING

 3D- Wafer Level packaging (3D-WLP)               

= post-processed TSVs

 Approach =

• 1) Thinning

• 2) TSV processing from the back

 Dimensions:

• Minimal pitch = 40 um

• Via diameter ~ 25 um

• Si thickness ~ 50 um

Via resistance < 20mΩ

 Low Capacitance: ~ 20 fF

 Design considerations:

• Landing pad to be designed at lowest metal

• Area consumption by TSV
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 Daisy chain demonstrator:

• Electrical characterization

• Reliability:
- OK up to 1000 cycles - 40C/150C
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3D INTEGRATED IMAGER TECHNOLOGY:
3D-WAFER LEVEL PACKAGING
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3D INTEGRATED IMAGER TECHNOLOGY:
DESIGN FOR 3D STACKING

 Critical issue:

• Etching (from the backside) of 

dielectric between lowest metal 

and Si

• Presence of (difficult to etch) 

dummy features in CMOS 

technology (!)

 Solution:

• Design for 3D stacking required

• Dedicated design rule available 

(patented)
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3D INTEGRATED IMAGER TECHNOLOGY:

3D STACKED IC (3D-SIC)
 3D- Wafer level packaging = process 

TSVs as a part of the CMOS process:

• At the level of the 1st metallization in the 

BEOL

• Advantage: use of area above TSV

 Approach =

• 1) CMOS process (incl. TSV)

• 2) Thinning,  TSV exposure,  bonding

 Dimensions:

• Minimal pitch = 10 um

• Via diameter ~ 3-5 um

• Si thickness ~ 15 um

 Via resistance ~ 20mΩ

 Via Capacitance: 40 fF (depletion)

 Design considerations:

• Area consumption by TSV
PIET DE MOOR 31

 

IC1

IC2

10um

5um

Bottom tier

Top tier

2
5
u
m

Cu- Cu bonding

10um

5um

Bottom tier

Top tier

2
5
u
m

Cu- Cu bonding

IC1

IC2



© IMEC 2010

3D INTEGRATED IMAGER TECHNOLOGY:

3D STACKED IC (3D-SIC) PROCESS FLOW
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3D INTEGRATED IMAGER TECHNOLOGY:
3D INTEGRATION: 3D-SIC DEMONSTRATORS

 3D Circuit Test Chip:

• IMEC 130 nm CMOS 2 metal layers 
platform technology

• Results: 

- I-V characteristics not affected by TSV 

for spacing down to 1.5 um

- 3D Ring oscillator (100 TSVs) 

operational
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3D INTEGRATED IMAGER TECHNOLOGY:

REDISTRIBUTION LAYER

 Redistribution layer options:

• Part of CMOS

• At backside of (e.g.) TSV wafer

- using e.g. Cu/dielectric
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PERIPHERAL 3D INTEGRATED IMAGERS

Advanced packaging technology at bond pad level:

• From traditional lateral wire bonding to TSV per bond pad + bump ball bonding

• = 3D integration at package level using Through Si Vias (TSVs)

Advantages:

• Smaller footprint

• Reduced capacitance               faster/low power interconnect

• Buttability with mimimal area loss

Applications:

• Consumer imagers

• Large area tiled imagers with minimal dead area

• Endoscopes

PIET DE MOOR 35

PCB board

imager imager

PCB board



© IMEC 2010
PIET DE MOOR

IMEC 2010
36

PERIPHERAL 3D INTEGRATED IMAGERS: 
TILED EDGELESS IMAGERS FOR LARGE AREA DETECTION

 Large area imagers:

• Stitching of large area imagers -> yield 

becomes critical

 Solution: 

• 4-side butting/tiling using 3D integration for 

vertical interconnections

• Edgeless imagers: advanced singulation close 

to active pixels:

- Dicing by grinding

- Side wall passivation
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TILABLE X-RAY IMAGERS USING IMEC 3D INTEGRATION: 

RELAXD

 X-ray detector hybridised on 
Medipix ROIC with post-
processed TSVs

 status: close to demonstrator 
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AREA 3D INTEGRATED IMAGERS

 Concept:

• Stacking of multiple (>2) layers: detection layer + ROIC layers

- Example:  passive photodetector layer + analog ROIC + digital image processor

• Using high density bumping + area redistributed TSVs

Advantages:

• General: optimization of (CMOS) technology for different layers

• Imager system:

- Vertical parallel readout chain allows high speed

- Triple (n-fold) area per pixel allows complex electronics per pixel

- Low capacitance interconnect to digital image processor allows high speed and 

low power 

 Challenge: system architecture:

• Optimal split in different layers of functionality and technology 
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AREA 3D INTEGRATED IMAGERS

 Status: system architecture study of an

imaging system on a chip-stack
• Integration of micro-optics layer:

- Ultra wide field of view

- Filters for hyperspectral imaging

• Shared pixels = multiple pixels per bump

• Smart analog/digital read-out: 

- Ultra high dynamic range

- ADC per group of pixels

- Variable resolution (active binning)

• Smart digital processing:

- 2D distributed group of processors

- Face recognition

 Next step: demonstrator design and manufacturing
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OUTLINE
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ADVANCED INTEGRATION:

FLEX EMBEDDED IMAGER

 Concept: embedding of a thinned imager in a flexible foil

 Applications:

• Non planar (bended) focal plane camera:

- Low cost & optimized lens design

• On/in the body radiation monitoring

for cancer therapy

• Tracking detectors for high energy particles:

- Low scattering (very thin)

- Bendable
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ADVANCED INTEGRATION:

FLEX EMBEDDED IMAGER

Technology:

• Extreme wafer thinning (20 um)

• Embedding on flex

 Example of related IMEC techno:

• Functional microcontroller in flex 

substrate

 Embedding of tracking imager 

ongoing 
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CONCLUSIONS

Advanced 3D integration technology enables smart 

imagers with high performance

The best integration scheme is application dependent

 imec has capabilities in:

• Backside thinning and passivation

• High density bumps

• Through Si vias

• Advanced assembly

 imec can offer specialty product development on 

demand up to small volume production (CMORE)
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